Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC

We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWC's ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape $\left(\frac{dN}{dE} = \phi_0 \left(E/\textrm{7 TeV}\right)^{-\alpha-\beta\ln\left(E/\textrm{7 TeV}\right)}\right)$ with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are $\phi_o$=(2.35$\pm$0.04$^{+0.20}_{-0.21}$)$\times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $\alpha$=2.79$\pm$0.02$^{+0.01}_{-0.03}$, and $\beta$=0.10$\pm$0.01$^{+0.01}_{-0.03}$. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are $\phi_o$=(2.31$\pm$0.02$^{+0.32}_{-0.17}$)$\times$10$^{-13}$ (TeV cm$^2$ s)$^{-1}$, $\alpha$=2.73$\pm$0.02$^{+0.03}_{-0.02}$, and $\beta$=0.06$\pm$0.01$\pm$0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.

William H. Lee | O. Tibolla | E. Belmont-Moreno | S. Kaufmann | G. Sinnis | H. Schoorlemmer | D. Rosa-González | F. Garfias | A. U. Abeysekara | A. Albert | L. Nellen | K. S. Caballero-Mora | F. Salesa Greus | T. Yapici | A. Zepeda | S. Casanova | C. M. Hui | S. Y. BenZvi | J. C. Arteaga-Velázquez | R. Arceo | C. Brisbois | H. Fleischhack | A. Jardin-Blicq | M. U. Nisa | E. Ruiz-Velasco | P. Surajbali | T. Weisgarber | R. Alfaro | R. W. Springer | R. W. Ellsworth | I. Torres | M. A. DuVernois | K. Tollefson | J. R. Angeles Camacho | M. Rosenberg | S. BenZvi | J. C. Díaz-Vélez | S. Westerhoff | J. Wood | R. Springer | J. Linnemann | K. Tollefson | J. García-González | B. Dingus | R. Ellsworth | A. Smith | M. Rosenberg | K. Engel | H. A. Solares | C. Brisbois | H. Fleischhack | J. P. Harding | A. Albert | A. Iriarte | P. Hüntemeyer | L. Nellen | A. Zepeda | A. Sandoval | E. Belmont-Moreno | H. L. Vargas | R. Arceo | G. Sinnis | R. Alfaro | D. Kieda | C. Hui | M. Mostafá | K. Caballero-Mora | M. DuVernois | S. Casanova | M. González | O. Tibolla | V. Joshi | K. Malone | A. Abeysekara | C. Álvarez | J. Álvarez | T. Capistrán | A. Carramiñana | U. Cotti | J. Cotzomi | C. D. León | E. D. L. Fuente | S. Dichiara | N. Fraija | F. Garfias | S. Hernández | B. Hona | F. Hueyotl-Zahuantitla | A. Jardin-Blicq | S. Kaufmann | A. Lara | A. Longinotti | G. Luis-Raya | S. Marinelli | O. Martinez | I. Martinez-Castellanos | J. Martínez-Castro | H. Martínez-Huerta | P. Miranda-Romagnoli | E. Moreno | A. Nayerhoda | M. Newbold | M. Nisa | R. Noriega-Papaqui | J. Pretz | E. Pérez-Pérez | Z. Ren | C. Rho | C. Rivière | D. Rosa-González | E. Ruiz-Velasco | H. Salazar | F. Greus | M. Schneider | M. Arroyo | P. Surajbali | I. Torres | T. Weisgarber | T. Yapici | A. Zepeda | H. Zhou | V. Baghmanyan | J. Hinton | H. Schoorlemmer | B. Fick | H. León Vargas | C. Alvarez | U. Cotti | B. Fick | E. Moreno | C. Rivière | H. Salazar | S. Westerhoff | B. L. Dingus | J. A. Goodman | J. T. Linnemann | A. J. Smith | W. H. Lee | D. Kieda | M. Tanner | M. Rosenberg | A. Sandoval | J. Morales-Soto | C. Espinoza | J. Lundeen | A. Peisker | M. Tanner | K. P. Arunbabu | J. Lundeen | P. Hüntemeyer | Michael Schneider | J. Hinton | J. Camacho | K. Arunbabu | J. Wood | H. A. Ayala Solares | J. Cotzomi | N. Fraija | S. Hernandez | A. Iriarte | V. Joshi | A. Lara | A. L. Longinotti | K. Malone | S. S. Marinelli | O. Martinez | I. Martinez-Castellanos | J. A. Matthews | P. Miranda-Romagnoli | M. Newbold | R. Noriega-Papaqui | J. Pretz | Z. Ren | C. D. Rho | M. Schneider | H. Zhou | A. Carramiñana | A. Galván-Gámez | M. Mostafá | E. Tabachnick | K. Engel | S. Dichiara | D. Avila Rojas | V. Baghmanyan | E. De la Fuente | C. Espinoza | B. Hona | F. Hueyotl-Zahuantitla | G. Luis-Raya | J. A. Morales-Soto | A. Nayerhoda | A. Peisker | M. Seglar Arroyo | E. Tabachnick | J. D. Álvarez | T. Capistrán | S. Coutiño de León | C. de León | J. A. García-González | M. M. González | J. Martínez-Castro | H. Martínez-Huerta | E. G. Pérez-Pérez | A. Lara | S. León | A. Galván-Gámez | J. Goodman | J. Matthews | D. Rojas | D. Rosa-González | W. Lee | S. D. de León | J. Goodman | V. Joshi | H. Solares

[1]  F. Aharonian,et al.  Searching for Galactic Cosmic-Ray Pevatrons with Multi-TeV Gamma Rays and Neutrinos , 2007, 0705.3011.

[2]  P. Munar-Adrover,et al.  Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes , 2014, 1406.6892.

[3]  J. A. Hinton,et al.  A Monte Carlo template based analysis for air-Cherenkov arrays , 2014, 1403.2993.

[4]  J. Galbraith-Frew,et al.  SPECTRUM AND MORPHOLOGY OF THE TWO BRIGHTEST MILAGRO SOURCES IN THE CYGNUS REGION: MGRO J2019+37 AND MGRO J2031+41 , 2012, 1202.0846.

[5]  Y. Uchiyama,et al.  FERMI LARGE AREA TELESCOPE DETECTION OF A BREAK IN THE GAMMA-RAY SPECTRUM OF THE SUPERNOVA REMNANT CASSIOPEIA A , 2013, 1310.8287.

[6]  P. R. Vishwanath,et al.  A Search of the Northern Sky for Ultra--High-Energy Point Sources , 1991 .

[7]  Giuseppe Vacanti,et al.  Observation of TeV gamma rays from the Crab Nebula using the atmospheric Cerenkov imaging technique , 1989 .

[8]  William H. Lee,et al.  Data acquisition architecture and online processing system for the HAWC gamma-ray observatory , 2017, 1709.03751.

[9]  Danzengluobu,et al.  CRAB NEBULA: FIVE-YEAR OBSERVATION WITH ARGO-YBJ , 2015, 1502.05665.

[10]  Felix Aharonian,et al.  The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observations with the HEGRA Stereoscopic Air Cerenkov Telescopes , 2004 .

[11]  William H. Lee,et al.  Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays , 2013, 1306.5800.

[12]  J. Matthews A Heitler model of extensive air showers , 2005 .

[13]  José Salgado,et al.  Nuclear Instruments and Methods , 2003 .

[14]  L. A. Antonelli,et al.  Performance of the MAGIC stereo system obtained with Crab Nebula data , 2011, Astroparticle Physics.

[15]  M. Takita,et al.  Energy determination of gamma-ray induced air showers observed by an extensive air shower array , 2017 .

[16]  H. J. Gils,et al.  Cosmic ray energy reconstruction from the S(500) observable recorded in the KASCADE-Grande air shower experiment , 2016 .

[17]  J. Knapp,et al.  The optimum distance at which to determine the size of a giant air shower , 2006, astro-ph/0608118.

[18]  K. Hoffman,et al.  High energy neutrino telescopes , 2008, 0812.3809.

[19]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[20]  H.-S. Zechlin,et al.  The Crab Nebula as a standard candle in very high-energy astrophysics , 2010, 1008.4524.

[21]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.