Approach of Improving Disk Performance to High-Quality Gap Control in Near-Field Optical Disk Drive System

Near-field technology has been expected as one of the promising techniques for increasing the recording density in an optical storage disk system since it was introduced. In a near-field optical disk drive system (NFDD), the gap between a disk and a solid immersion lens (SIL) is required to be less than one-tenth laser wavelength with a high accuracy in order to generate an evanescent wave for reading or writing a signal. This is because the gap performance has detrimental effects on the RF amplitude vibration in a reading channel and on the signal laser peak power vibration in a writing channel. In this study, we first clarify whether specific disk resonances cause the deterioration of the gap performance in the NFDD. We then demonstrate an approach of improving the disk mechanical performance in order to achieve a highly precise gap performance. Finally, we investigate a high-performance gap servo system by utilizing the disk substrate suitable for the NFDD.