Autoregressive Gamma Processes

1 Autoregressive Gamma Processes We introduce autoregressive gamma processes of order p ARG(p)] with transition distributions which are noncentral gamma up to a change of scale. The paper provides the stationarity a n d ergodicity conditions for ARG processes of any autoregressive order p, including long memory. The analytical expressions of the conditional moments and nonlinear autocorrelations for any ARG(p) are also given. Moreover, the nonlinear state space representation of an ARG process is used to derive the ltering, smoothing and forecasting algorithms. Finally, the paper introduces estimation and inference methods which are illustrated by an application to interquote durations series of an infrequently traded stock listed on the TSE. Processus gamma autoregressif Nous introduisons des processus de Markov, dont les transitions sont d e s distributions gamma d ecentr ees a un facteur d' echelle pr es. Nous etudions les propri et es dynamiques de ces processus. En particulier nous donnons les expressions explicites des deux premiers moments conditionnels, d erivons les autocorr elogrammes d'ordre un et deux et explicitons la d ecomposition canonique non lin eaire du processus. Cette sp eciication est utilis ee pour analyser la dynamique des dur ees entre transactions. Mots cl es : Dur ees, processus gamma, processus de Cox-Ingersoll-Ross, analyse canonique non lin eaire, donn ees haute-fr equence, dur e es entre transactions .

[1]  Peter A. W. Lewis,et al.  Discrete Time Series Generated by Mixtures. I: Correlational and Runs Properties , 1978 .

[2]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[3]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[4]  D. Lamberton,et al.  Introduction au calcul stochastique appliqué à la finance , 1997 .

[5]  D. Lampard A stochastic process whose successive intervals between events form a first order Markov chain — I , 1968, Journal of Applied Probability.

[6]  D. P. Gaver,et al.  First-order autoregressive gamma sequences and point processes , 1980, Advances in Applied Probability.

[7]  C. Granger,et al.  Modeling volatility persistence of speculative returns: A new approach , 1996 .

[8]  Joann Jasiak,et al.  Persistence in Intertrade Durations , 1999 .

[9]  J. E. Miller,et al.  A non-Gaussian state space model and application to prediction of records , 1986 .

[10]  C. H. Sim First-order autoregressive models for gamma and exponential processes , 1990 .

[11]  J. F. Barrett,et al.  An expansion for some second-order probability distributions and its application to noise problems , 1955, IRE Trans. Inf. Theory.

[12]  C. Sim,et al.  Simulation of weibull and gamma autoregressive stationary process , 1986 .

[13]  H. O. Lancaster Correlations and Canonical Forms of Bivariate Distributions , 1963 .

[14]  A. J. Lawrance,et al.  A new autoregressive time series model in exponential variables (NEAR(1)) , 1981, Advances in Applied Probability.

[15]  R. Engle,et al.  Measuring, Forecasting and Explaining Time Varying Liquidity in the Stock Market , 1997 .

[16]  E. Wong,et al.  On Polynomial Expansions of Second-Order Distributions , 1962 .

[17]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  E. K. Wong The Construction of a Class of Stationary Markoff Processes , 1964 .

[20]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[21]  Eric Ghysels,et al.  Stochastic volatility duration models , 2004 .

[22]  G. Eagleson Polynomial Expansions of Bivariate Distributions , 1964 .

[23]  Christian Gourieroux,et al.  Structural Laplace Transform and Compound Autoregressive Models , 2006 .

[24]  R. M. Phatarfod Some approximate results in renewal and dam theories , 1971, Journal of the Australian Mathematical Society.

[25]  A. J. Lawrance,et al.  Modelling and Residual Analysis of Nonlinear Autoregressive Time Series in Exponential Variables , 1985 .

[26]  L. Bauwens,et al.  The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks , 2000 .

[27]  S. Kotz,et al.  Distribution of Sum of Identically Distributed Exponentially Correlated Gamma-Variables , 1964 .