The size of the anterior corpus callosum correlates with the strength of hemispheric encoding-retrieval asymmetry in the ventrolateral prefrontal cortex

Functional lateralization of episodic memory processes in the frontal lobe is an area of intense study in the field of cognitive neuroimaging. Yet, to date there is insufficient knowledge of what role the interhemispheric structural connectivity plays in this lateralized organization. We analyzed functional and structural magnetic resonance imaging data from healthy adult volunteers who performed an associative encoding and retrieval task. We examined the relationship between functional voxel-based relative asymmetry of encoding and retrieval in the frontal lobes and the size of the anterior corpus callosum (antCC; corrected for brain size). The size of the antCC was strongly associated to the relative encoding-retrieval asymmetry in the ventrolateral prefrontal cortex (BA 47). These findings show that the functional asymmetry of episodic memory processes in the frontal lobes is associated with the structural connectivity between the hemispheres.

[1]  S. F. Witelson Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. , 1989, Brain : a journal of neurology.

[2]  Scott A. Huettel,et al.  Age-related slowing of memory retrieval: Contributions of perceptual speed and cerebral white matter integrity , 2008, Neurobiology of Aging.

[3]  Martin Lepage,et al.  Neural Correlates of Memory for Items and for Associations: An Event-related Functional Magnetic Resonance Imaging Study , 2005, Journal of Cognitive Neuroscience.

[4]  J. Logan,et al.  Under-Recruitment and Nonselective Recruitment Dissociable Neural Mechanisms Associated with Aging , 2002, Neuron.

[5]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[6]  J E Desmond,et al.  Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. , 1996, Alcoholism, clinical and experimental research.

[7]  D. Long The Two Halves of the Brain , 2011 .

[8]  Jonas Persson,et al.  Large Scale Neurocognitive Networks Underlying Episodic Memory , 2000, Journal of Cognitive Neuroscience.

[9]  Norman D. Cook,et al.  The Brain Code , 1986 .

[10]  Stefan Pollmann,et al.  Dichotic listening in patients with splenial and nonsplenial callosal lesions. , 2002, Neuropsychology.

[11]  S. F. Witelson,et al.  Left out axoms make men right: A hypothesis for the origin of handedness and functional asymmetry , 1991, Neuropsychologia.

[12]  Christine Chiarello,et al.  Varieties of Interhemispheric Inhibition, or How to Keep a Good Hemisphere Down , 1996, Brain and Cognition.

[13]  Sterling C. Johnson,et al.  Corpus callosum surface area across the human adult life span: Effect of age and gender , 1994, Brain Research Bulletin.

[14]  René Westerhausen,et al.  The association of macro- and microstructure of the corpus callosum and language lateralisation , 2006, Brain and Language.

[15]  Roberto Cabeza,et al.  Neural Correlates of Relational Memory: Successful Encoding and Retrieval of Semantic and Perceptual Associations , 2005, The Journal of Neuroscience.

[16]  R. Cabeza,et al.  Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies , 2000, Journal of Cognitive Neuroscience.

[17]  Edith V. Sullivan,et al.  Sex differences in corpus callosum size: relationship to age and intracranial size , 2001, Neurobiology of Aging.

[18]  Kenneth Hugdahl,et al.  The corpus callosum in dichotic listening studies of hemispheric asymmetry: A review of clinical and experimental evidence , 2008, Neuroscience & Biobehavioral Reviews.

[19]  Patrice Y. Simard,et al.  Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. , 1994, Cerebral cortex.

[20]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[21]  Biyu J. He,et al.  Loss of Resting Interhemispheric Functional Connectivity after Complete Section of the Corpus Callosum , 2008, The Journal of Neuroscience.

[22]  M. J. Emerson,et al.  The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis , 2000, Cognitive Psychology.

[23]  B. C. Richardson,et al.  Human corpus callosum in aging and alzheimer's disease: a magnetic resonance imaging study , 1994, Neurobiology of Aging.

[24]  R. Cabeza Hemispheric asymmetry reduction in older adults: the HAROLD model. , 2002, Psychology and aging.

[25]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[26]  R. Habib,et al.  Hemispheric Asymmetry of Memory. , 2008 .

[27]  Robert J. Zatorre,et al.  Sexual Dimorphism in the Corpus Callosum: Methodological Considerations in MRI Morphometry , 2001, NeuroImage.

[28]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[29]  Dong Ik Kim,et al.  Corpus callosal connection mapping using cortical gray matter parcellation and DT‐MRI , 2008, Human brain mapping.

[30]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[31]  Paul M. Corballis,et al.  Redundancy gain in simple reaction time following partial and complete callosotomy , 2004, Neuropsychologia.

[32]  Michael B. Miller,et al.  Separable Routes to Human Memory Formation: Dissociating Task and Material Contributions in the Prefrontal Cortex , 2004, Journal of Cognitive Neuroscience.

[33]  M. O’Sullivan,et al.  Activate your online subscription , 2001, Neurology.

[34]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[35]  Richard J. Davidson,et al.  The asymmetrical brain , 2003 .

[36]  Scott T. Grafton,et al.  Structural Organization of the Corpus Callosum Predicts the Extent and Impact of Cortical Activity in the Nondominant Hemisphere , 2008, The Journal of Neuroscience.

[37]  R. Cabeza,et al.  Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction , 2002, Neuroscience & Biobehavioral Reviews.

[38]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[39]  Angela D. Friederici,et al.  Role of the Corpus Callosum in Speech Comprehension: Interfacing Syntax and Prosody , 2007, Neuron.

[40]  Randy L. Buckner,et al.  Set-and Code-Specific Activation in the Frontal Cortex: An fMRI Study of Encoding and Retrieval of Faces and Words , 1999, Journal of Cognitive Neuroscience.

[41]  Lars Nyberg,et al.  Hemispheric asymmetries of memory: the HERA model revisited , 2003, Trends in Cognitive Sciences.

[42]  L Tugan Muftuler,et al.  The effects of age, memory performance, and callosal integrity on the neural correlates of successful associative encoding. , 2011, Cerebral cortex.

[43]  L. Nyberg,et al.  Preserved hippocampus activation in normal aging as revealed by fMRI , 2011, Hippocampus.

[44]  C. Stern,et al.  Prefrontal–Temporal Circuitry for Episodic Encoding and Subsequent Memory , 2000, The Journal of Neuroscience.

[45]  E. Ross,et al.  Topography of the Human Corpus Callosum , 1985, Journal of neuropathology and experimental neurology.

[46]  A. Galaburda,et al.  Individual variability in cortical organization: Its relationship to brain laterality and implications to function , 1990, Neuropsychologia.

[47]  F. Craik,et al.  Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Rachael D. Seidler,et al.  Age Differences in Interhemispheric Interactions: Callosal Structure, Physiological Function, and Behavior , 2011, Front. Neurosci..

[49]  Cathy J. Price,et al.  Lateralization is Predicted by Reduced Coupling from the Left to Right Prefrontal Cortex during Semantic Decisions on Written Words , 2010, Cerebral cortex.

[50]  J. Staiger,et al.  Using High-resolution , 2022 .

[51]  Gereon R. Fink,et al.  Mechanisms of hemispheric specialization: Insights from analyses of connectivity , 2007, Neuropsychologia.

[52]  A. Thiel,et al.  Direct Demonstration of Transcallosal Disinhibition in Language Networks , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  A. Rubens,et al.  Interhemispheric transfer in patients with incomplete section of the corpus callosum. Anatomic verification with magnetic resonance imaging. , 1989, Archives of neurology.

[54]  Roberto Cabeza,et al.  Aging Gracefully: Compensatory Brain Activity in High-Performing Older Adults , 2002, NeuroImage.

[55]  Jonas Persson,et al.  Structure-function correlates of cognitive decline in aging. , 2006, Cerebral cortex.

[56]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[57]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[58]  Ferath Kherif,et al.  Explaining Function with Anatomy: Language Lateralization and Corpus Callosum Size , 2008, The Journal of Neuroscience.

[59]  Kenneth Hugdahl,et al.  Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. , 2009, Cerebral cortex.