Augmenting dimension group invariants for substitution dynamics

We present new invariants for substitutional dynamical systems. Our main contribution is a flow invariant which is strictly finer than, but related and akin to, the dimension groups of Herman et al. We present this group as a stationary inductive limit of a system associated to an integer matrix defined from combinatorial data based on the class of special words of the dynamical system.

[1]  R. G. Douglas,et al.  Extensions of C*-algebras and K-homology , 1977 .

[2]  Kengo Matsumoto,et al.  Shannon graphs, subshifts and lambda-graph systems , 2002 .

[3]  I. Putnam,et al.  Ordered Bratteli diagrams, dimension groups and topological dynamics , 1992 .

[4]  T. Giordano,et al.  Topological orbit equivalence and C*-crossed products. , 1995 .

[5]  Grzegorz Rozenberg,et al.  The mathematical theory of L systems , 1980 .

[6]  Ki Hang Kim,et al.  Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups , 2001, Ergodic Theory and Dynamical Systems.

[7]  On the topological stable rank of certain transformation group C*-algebras , 1990, Ergodic Theory and Dynamical Systems.

[8]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[9]  T. M. Carlsen Operator Algebraic Applications in Symbolic Dynamics , 2004 .

[10]  Claude L. Schochet,et al.  The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor , 1987 .

[11]  George A. Elliott,et al.  On the classification of inductive limits of sequences of semisimple finite-dimensional algebras , 1976 .

[12]  Jean-Jacques Pansiot,et al.  Decidability of Periodicity for Infinite Words , 1986, RAIRO Theor. Informatics Appl..

[13]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[14]  CUNTZ–PIMSNER C*-ALGEBRAS ASSOCIATED WITH SUBSHIFTS , 2005, math/0505503.

[15]  Brigitte Mossé,et al.  Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..

[16]  Brigitte Mosse,et al.  Properties of words and recognizability of fixed points of a substitution , 1992 .

[17]  Kengo Matsumoto Dimension groups for subshifts and simplicity of the associated $C^{*}$-algebras , 1999 .

[18]  Marcy Barge,et al.  Asymptotic orbits of primitive substitutions , 2003, Theor. Comput. Sci..

[19]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[20]  Wolfgang Krieger,et al.  A class ofC*-algebras and topological Markov chains , 1980 .

[21]  Bowen–Franks Groups for Subshifts and Ext-Groups for C*-Algebras , 2001 .

[22]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[23]  L. Zamboni,et al.  Directed Graphs and Substitutions , 2001, Theory of Computing Systems.

[24]  M. Barge,et al.  A complete invariant for the topology of one-dimensional substitution tiling spaces , 2001, Ergodic Theory and Dynamical Systems.

[25]  K-theory for C^* -algebras associated with subshifts , 1998 .

[26]  Huaxin Lin,et al.  Classification of direct limits of generalized Toeplitz algebras , 1997 .

[27]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[28]  A. Forrest K-groups associated with substitution minimal systems , 1997 .

[29]  S. Eilers,et al.  Ordered K-groups associated to substitutional dynamics , 2006 .

[30]  José Manuel Gutiérrez,et al.  A Java Applet , 1999 .

[31]  Stabilized $C^*$-algebras constructed from symbolic dynamical systems , 2000, Ergodic Theory and Dynamical Systems.

[32]  Kengo Matsumoto On C*-Algebras Associated with Subshifts , 1997 .

[33]  Bowen–Franks groups as an invariant for flow equivalence of subshifts , 2001, Ergodic Theory and Dynamical Systems.

[34]  Kengo Matsumoto,et al.  Some remarks on the C^*-algebras associated with subshifts , 2004 .

[35]  Søren Eilers,et al.  Matsumoto $K$-groups associated to certain shift spaces , 2004, Documenta Mathematica.