Inorganic Photorefractive Materials

Light-induced refractive index changes — so-called photorefractive effects — in inorganic electro-optic crystals were discovered by Ashkin et al. in 1966 [1]. Though in the beginning these effects seemed to be very undesirable (“optical damage”), Chen et al. recognized only two years later the significance for holographic data storage [2]. In 1975, Staebler et al. reported the recording of 500 thermally fixed volume phase holograms in LiNbO3:Fe, each hologram with more than 2.5% readout efficiency [3] . The method is based on the Bragg condition allowing the superposition of many volume (“thick”) holograms at the same site under different angles.

[1]  S. H. Lee,et al.  Non-linear optical materials and applications , 1993 .

[2]  Kiyoshi Nakagawa,et al.  Electro-optic and dielectric properties of photorefractive BaTiO 3 and KNbO 3 , 1995 .

[3]  S. Fries Spatial frequency mixing in electrooptic crystals: Application to nondestructive read-out of optically erasable volume holograms , 1992 .

[4]  D. Staebler,et al.  Improved electrooptic materials and fixing techniques for holographic recording. , 1972, Applied optics.

[5]  Photorefractive response time measurement in GaAs crystals by phase modulation in two-wave mixing. , 1994, Optics letters.

[6]  Marko Zgonik,et al.  PHOTOREFRACTIVE EFFECT IN CU- AND NI-DOPED KNBO3 IN THE VISIBLE AND NEAR INFRARED , 1994 .

[7]  D Psaltis,et al.  Storage of 1000 holograms with use of a dual-wavelength method. , 1997, Applied optics.

[8]  K. Buse,et al.  Growth and characterization of undoped and doped Bi12 TiO20 crystals , 1993 .

[9]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[10]  H. Vormann,et al.  Hydrogen as origin of thermal fixing in LiNbO3: Fe , 1981 .

[11]  T K Gaylord,et al.  Laser scattering induced holograms in lithium niobate. , 1974, Applied optics.

[12]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[13]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[14]  R. Hellwarth,et al.  Hole - electron competition in photorefractive gratings. , 1986, Optics letters.

[15]  H. Hesse,et al.  Influence of annealing treatments on photorefractive properties of KTa1-xNbxO3:Fe crystals , 1995 .

[16]  G J Dunning,et al.  Ultralong dark decay measurements in BaTiO(3). , 1996, Optics letters.

[17]  Karsten Buse,et al.  Reduction of light-induced refractive-index changes by decreased modulation of light patterns in photorefractive crystals , 1998 .

[18]  David D. Nolte,et al.  Photorefractive phase shift induced by hot-electron transport: multiple-quantum-well structures , 1994 .

[19]  E. Krätzig,et al.  Refractive indices of photorefractive bismuth titanate, barium-calcium titanate, bismuth germanium oxide, and lead germanate , 1997 .

[20]  F. Micheron,et al.  Electrical Control of Fixation and Erasure of Holographic Patterns in Ferroelectric Materials , 1972 .

[21]  W. J. Burke,et al.  Multiple storage and erasure of fixed holograms in Fe−doped LiNbO3 , 1975 .

[22]  Daniel Mahgerefteh,et al.  Theory of the photorefractive effect for Bi 12 SiO 20 and BaTiO 3 with shallow traps , 1991 .

[23]  H C Külich,et al.  Reconstructing volume holograms without image field losses. , 1991, Applied optics.

[24]  D. Nolte,et al.  Two‐wave mixing in photorefractive AlGaAs/GaAs quantum wells , 1991 .

[25]  B. Dischler,et al.  Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods , 1977 .

[26]  R. Pankrath,et al.  Growth and dielectric properties of congruently melting Ba1-xCaxTiO3 crystals , 1997 .

[27]  E. Krätzig,et al.  Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals , 1978 .

[28]  Karsten Buse,et al.  Activation of BaTiO3 for infrared holographic recording , 1991 .

[29]  L. Boatner,et al.  KTN as a holographic storage material , 1980 .

[30]  Reeves,et al.  Photorefractive properties of KNbO3. , 1991, Physical review. B, Condensed matter.

[31]  R. Ryf,et al.  High photorefractive sensitivity at 860 nm in reduced rhodium-doped KNbO(3). , 1997, Optics Letters.

[32]  Karsten Buse,et al.  Light-induced charge transport properties of Sr 0.61 Ba 0.39 Nb 2 O 6 :Ce crystals , 1996 .

[33]  Karsten Buse Light-induced charge transport processes in photorefractive crystals II: Materials , 1997 .

[34]  I. A. Sokolov,et al.  Non‐steady‐state photo‐electromotive‐force induced by dynamic gratings in partially compensated photoconductors , 1990 .

[35]  D. Marple,et al.  Refractive Index of GaAs , 1964 .

[36]  S. W. McCahon,et al.  Measurement of electro‐optic and electrogyratory effects in Bi12TiO20 , 1990 .

[37]  G. von Bally,et al.  Phase shifting holographic double exposure interferometry with fast photorefractive crystals , 1997 .

[38]  Ratnakar R. Neurgaonkar,et al.  Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate , 1987 .

[39]  D Psaltis,et al.  System metric for holographic memory systems. , 1996, Optics letters.

[40]  D. Brady,et al.  Adaptive optical networks using photorefractive crystals. , 1988, Applied optics.

[41]  D. B. Fraser,et al.  HOLOGRAPHIC STORAGE IN LITHIUM NIOBATE , 1968 .

[42]  Alastair M. Glass,et al.  Multiphoton photorefractive processes for optical storage in LiNbO3 , 1974 .

[43]  B. A. Wechsler,et al.  High‐efficiency fast response in photorefractive BaTiO3 at 120 °C , 1988 .

[44]  Hirotsugu Kozuka,et al.  High‐sensitive holographic storage in Ce‐doped SBN , 1977 .

[45]  Robert Bruce Lindsay,et al.  Physical Properties of Crystals , 1957 .

[46]  Karsten Buse,et al.  Refractive Indices of Single Domain BaTiO3 for Different Wavelengths and Temperatures , 1993 .

[47]  P. Günter,et al.  Photorefractive effect in crystals with a nonlinear recombination of charge carriers: theory and observation in KNbO 3 , 1991 .

[48]  J. J. Amodei,et al.  HOLOGRAPHIC PATTERN FIXING IN ELECTRO‐OPTIC CRYSTALS , 1971 .

[49]  Karsten Buse,et al.  Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods , 1997 .

[50]  W. Akande Estimation of Stopping Powers of Non‐Relativistic Electrons in Solid Materials , 1993 .

[51]  K. Buse Thermal gratings and pyroelectrically produced charge redistribution in BaTiO 3 and KNbO 3 , 1993 .

[52]  L. Holtmann,et al.  A model for the nonlinear photoconductivity of BaTiO3 , 1989 .

[53]  Karsten Buse,et al.  Three-valence charge-transport model for explanation of the photorefractive effect , 1995 .

[54]  M. Soskin,et al.  Holographic storage in electrooptic crystals. i. steady state , 1978 .

[55]  F. Jermann,et al.  Light-induced charge transport in LiNbO 3 :Fe at high light intensities , 1993 .

[56]  E. Krätzig,et al.  Spatial frequency mixing in lithium niobate , 1991 .

[57]  E. Krätzig,et al.  LiTaO3 as holographic storage material , 1978 .

[58]  H. Vormann,et al.  Two step excitation in LiTaO3:Fe for optical data storage , 1984 .

[59]  D Psaltis,et al.  Electrical fixing of 1000 angle-multiplexed holograms in SBN:75. , 1997, Optics letters.

[60]  Karsten Buse,et al.  ORIGIN OF THERMAL FIXING IN PHOTOREFRACTIVE LITHIUM NIOBATE CRYSTALS , 1997 .

[61]  B. S. Chen,et al.  Femtosecond temporal encoding in barium titanate. , 1991, Optics letters.

[62]  George C. Valley,et al.  Simultaneous electron/hole transport in photorefractive materials , 1986 .

[63]  B. C. Grabmaier,et al.  Influence of Mg doping and composition on the light‐induced charge transport in LiNbO3 , 1988 .

[64]  G. D. Boyd,et al.  OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3 , 1966 .

[65]  Alastair M. Glass,et al.  Control of the Susceptibility of Lithium Niobate to Laser‐Induced Refractive Index Changes , 1971 .

[66]  K. Buse,et al.  Electrooptic and photorefractive properties of ferroelectric barium-calcium titanate crystals , 1998 .

[67]  W. Phillips,et al.  Hologram storage in photochromic LiNbO3 , 1974 .

[68]  S. Stepanov,et al.  Holographic storage of information and peculiarities of light diffraction in birefringent electro-optic crystals , 1979 .

[69]  D. Psaltis,et al.  Non-volatile holographic storage in doubly doped lithium niobate crystals , 1998, Nature.

[70]  Karsten Buse,et al.  Charge-transport parameters of photorefractive strontium-barium niobate crystals doped with cerium , 1998 .

[71]  G. Brost,et al.  Intensity-dependent absorption and photorefractive effects in barium titanate , 1988 .

[72]  S. Stepanov,et al.  Holographic and non-steady-state photocurrent characterization of photorefractive barium–calcium titanate , 1999 .

[73]  S. Riehemann,et al.  Refractive Indices, Permittivities, and Linear Electrooptic Coefficients of Tetragonal Potassium Tantalate-Niobate Crystals , 1993 .

[74]  Fundamental Gas Processes for the CVD Diamond Growth from H2/C2/H2/O2 and Ar/C2H2/O2 Mixtures , 1996 .