ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

B. A. Boom | N. M. Brown | H. N. Isa | S. Klimenko | M. Fejer | P. Couvares | P. Graff | J. Gair | S. Babak | N. Gehrels | S. Fairhurst | A. Heptonstall | D. Hofman | D. Keitel | D. Kelley | W. Kells | R. Kennedy | J. Key | A. Khalaidovski | S. Khan | Z. Khan | E. Khazanov | N. Kijbunchoo | C. Kim | J. Kim | K. Kim | Y. Kim | E. King | P. King | D. Kinzel | J. Kissel | L. Kleybolte | S. Koehlenbeck | K. Kokeyama | S. Koley | V. Kondrashov | A. Kontos | M. Korobko | W. Korth | I. Kowalska | D. Kozak | V. Kringel | B. Krishnan | A. Królak | C. Krueger | G. Kuehn | P. Kumar | L. Kuo | A. Kutynia | B. Lackey | M. Landry | B. Lantz | P. Lasky | A. Lazzarini | C. Lazzaro | P. Leaci | S. Leavey | E. Lebigot | C. Lee | H. Lee | H. Lee | K. Lee | M. Leonardi | J. Leong | B. Abbott | E. Huerta | Z. Etienne | D. Holz | H. Chen | R. Abbott | T. Abbott | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | A. Allocca | P. Altin | S. Anderson | W. Anderson | K. Arai | M. Araya | J. Areeda | S. Ascenzi | G. Ashton | S. Aston | P. Astone | P. Aufmuth | P. Bacon | M. Bader | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | J. Barayoga | S. Barclay | B. Barish | D. Barker | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bazzan | M. Bejger | A. Bell | G. Bergmann | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | S. Bloemen | M. Boer | G. Bogaert | F. Bondu | R. Bonnand | R. Bork | V. Boschi | S. Bose | Y. Bouffanais | A. Bozzi | C. Bradaschia | M. Branchesi | J. Brau | T. Briant | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | L. Cadonati | G. Cagnoli | C. Cahillane | T. Callister | E. Calloni | J. Camp | K. Cannon | J. Cao | E. Capocasa | F. Carbognani | S. Caride | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | G. Cerretani | E. Cesarini | S. Chamberlin | M. Chan | S. Chao | P. Charlton | É. Chassande-Mottin | Y. Chen | A. Chincarini | A. Chiummo | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | S. Chung | G. Ciani | F. Clara | J. Clark | F. Cleva | P. Cohadon | C. Collette | L. Cominsky | M. Constancio | L. Conti | N. Cornish | A. Corsi | S. Cortese | C. Costa | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | J. Cripe | S. Crowder | A. Cumming | L. Cunningham | E. Cuoco | S. Danilishin | S. D’Antonio | K. Danzmann | V. Dattilo | I. Dave | E. Daw | D. DeBra | J. Degallaix | S. Deleglise | T. Dent | R. DeSalvo | S. Dhurandhar | M. Díaz | F. Donovan | K. Dooley | S. Doravari | T. Downes | M. Drago | J. Driggers | Z. Du | S. Dwyer | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | I. Ferrante | F. Ferrini | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | R. Flaminio | M. Fletcher | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | S. Gaebel | L. Gammaitoni | S. Gaonkar | F. Garufi | G. Gaur | G. Gemme | E. Génin | A. Gennai | L. Gergely | V. Germain | A. Ghosh | S. Ghosh | J. Giaime | A. Giazotto | K. Gill | E. Goetz | R. Goetz | G. González | A. Gopakumar | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | P. Groot | H. Grote | S. Grunewald | G. Guidi | A. Gupta | M. Gupta | R. Gustafson | B. Hall | E. Hall | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | J. Hanson | T. Hardwick | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | M. Heurs | S. Hild | D. Hoak | K. Holt | P. Hopkins | J. Hough | E. Howell | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | J. Isac | M. Isi | B. Iyer | T. Jacqmin | K. Jani | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | C. Kalaghatgi | S. Kandhasamy | G. Kang | J. Kanner | S. Karki | M. Kasprzack | W. Katzman | S. Kaufer | K. Kawabe | F. Kéfélian | I. Khan | A. Lenon | N. Arnaud | K. Arun | B. Berger | M. Bizouard | V. Brisson | F. Cavalier | E. Coccia | M. Davier | R. Essick | V. Frey | M. Hannam | P. Hello | D. Huet | K. Izumi | N. Johnson-McDaniel | V. Kalogera | M. Abernathy | T. Adams | P. Addesso | B. Allen | C. Arceneaux | M. Ast | C. Aulbert | J. Batch | C. Baune | V. Bavigadda | B. Behnke | C. Bell | J. Bergman | S. Bhagwat | C. Biwer | O. Bock | T. Bodiya | C. Bogan | A. Bohé | P. Bojtos | C. Bond | V. Braginsky | D. Brown | C. Buchanan | J. Calderón Bustillo | C. Capano | J. Casanueva Diaz | C. Cepeda | L. Cerboni Baiardi | R. Chakraborty | T. Chalermsongsak | C. Cheng | J. Chow | A. Colla | A. Conte | D. Cook | K. Craig | T. Dal Canton | N. Darman | H. Daveloza | G. Davies | R. Day | G. Debreczeni | M. De Laurentis | W. Del Pozzo | T. Denker | H. Dereli | V. Dergachev | R. Derosa | R. De Rosa | L. Di Fiore | M. Di Giovanni | A. Di Lieto | I. Di Palma | A. D. Di Virgilio | G. Dojcinoski | V. Dolique | R. Douglas | R. Drever | M. Ducrot | H. Eggenstein | W. Engels | R. Everett | M. Factourovich | Q. Fang | H. Fehrmann | S. Franco | T. Fricke | A. Gatto | B. Gendre | K. Giardina | A. Glaefke | L. Gondán | N. Gordon | X. Guo | K. Gushwa | J. Hacker | M. Hart | M. Hartman | K. Hodge | S. Hollitt | D. Hosken | E. Houston | S. Huang | A. Idrisy | N. Indik | D. Ingram | G. Islas | T. Isogai | H. Jang | S. Jawahar | F. Jiménez-Forteza | W. Johnson | E. Katsavounidis | T. Kaur | F. Kawazoe | M. Kehl | J. Lange | J. George | Y. Hu | E. Ferreira | E. Gustafson | P. Brady | R. Byer | T. Corbitt | S. Di Pace | J. G. Gonzalez Castro | F. Khalili | Namjun Kim | C. Devine | H. K | Y. Hu | H. Cho | M. di Giovanni | P. Kumar | D. Brown | S. Ghosh | N. Brown | A. Bell | S. Anderson | M. Gupta | D. Ingram | N. Kim | Archisman Ghosh | A. Cumming | T. Hardwick | R. Jones | K. Kawabe | D. Cook

[1]  Thomas Hellman PHIL , 2018, Encantado.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  Elizabeth Lou New South Wales , 1912, Australian endodontic journal : the journal of the Australian Society of Endodontology Inc.

[4]  Olga Smirnova,et al.  Nature in London , 2016 .

[5]  Michael Pürrer,et al.  Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2016 .

[6]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[7]  F. Ohme,et al.  Can we measure individual black-hole spins from gravitational-wave observations? , 2015, 1512.04955.

[8]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[9]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[10]  Christian Reisswig,et al.  Energetics and phasing of nonprecessing spinning coalescing black hole binaries , 2015, 1506.08457.

[11]  J. Healy,et al.  Spin flips in generic black hole binaries , 2015, 1506.04768.

[12]  Ulrike Goldschmidt,et al.  Three Hundred Years Of Gravitation , 2016 .

[13]  D. Trifirò,et al.  Precessional Instability in Binary Black Holes with Aligned Spins. , 2015, Physical review letters.

[14]  T. Maccarone,et al.  Revisiting the dynamical case for a massive black hole in IC10 X-1 , 2015, 1506.03882.

[15]  R. O’Shaughnessy,et al.  Multi-timescale analysis of phase transitions in precessing black-hole binaries , 2015, 1506.03492.

[16]  Lawrence E. Kidder,et al.  Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles. , 2015, Physical review letters.

[17]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[18]  F. Ohme,et al.  Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.

[19]  Michael Boyle,et al.  Improved methods for simulating nearly extremal binary black holes , 2014, 1412.1803.

[20]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[21]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[22]  I. Mandel,et al.  Testing general relativity with compact coalescing binaries: comparing exact and predictive methods to compute the Bayes factor , 2014, 1408.2356.

[23]  Y. Zlochower,et al.  Remnant mass, spin, and recoil from spin aligned black-hole binaries , 2014, 1406.7295.

[24]  E. Ochsner,et al.  A more effective coordinate system for parameter estimation of precessing compact binaries from gravitational waves , 2014, 1404.7070.

[25]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[26]  V. Raymond,et al.  Measuring the spin of black holes in binary systems using gravitational waves. , 2014, Physical review letters.

[27]  Michael Pürrer,et al.  Frequency-domain reduced order models for gravitational waves from aligned-spin compact binaries , 2014 .

[28]  P. Jonker,et al.  Mass Measurements of Stellar and Intermediate-Mass Black Holes , 2013, Space Science Reviews.

[29]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[30]  S. Fairhurst,et al.  Comparison of gravitational wave detector network sky localization approximations , 2013, 1310.7454.

[31]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[32]  Yi Pan,et al.  Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.

[33]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[34]  E. Mazets,et al.  THE ULTRALUMINOUS GRB 110918A , 2013, 1311.5734.

[35]  Mansi M. Kasliwal,et al.  ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS , 2013, 1309.1554.

[36]  Michael Boyle,et al.  Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration , 2013, 1307.5307.

[37]  M. Pürrer,et al.  Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms , 2013, 1306.2320.

[38]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[39]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[40]  J. K. Blackburn,et al.  Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network , 2013, 1304.1775.

[41]  Richard O'Shaughnessy,et al.  Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: A diagnostic of compact-binary formation , 2013, 1302.4442.

[42]  S. Fairhurst,et al.  Degeneracy between mass and spin in black-hole-binary waveforms , 2012, 1211.0546.

[43]  J. Healy,et al.  Precession during merger: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger , 2012, 1209.3712.

[44]  P. Schmidt,et al.  Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals , 2012, 1207.3088.

[45]  C. Palenzuela,et al.  Dynamical Boson Stars , 2012, Living Reviews in Relativity.

[46]  A. L. Tiec The Overlap of Numerical Relativity, Perturbation Theory and Post-Newtonian Theory in the Binary Black Hole Problem , 2012, 1408.5505.

[47]  Michael Boyle,et al.  The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries , 2012, 1201.5319.

[48]  J. Veitch,et al.  Estimating parameters of coalescing compact binaries with proposed advanced detector networks , 2011, 1201.1195.

[49]  C. Broeck,et al.  Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era , 2011, 1111.3044.

[50]  W. Marsden I and J , 2012 .

[51]  F. Ohme Analytical meets numerical relativity: status of complete gravitational waveform models for binary black holes , 2011, 1111.3737.

[52]  Y. Zlochower,et al.  Hangup kicks: still larger recoils by partial spin-orbit alignment of black-hole binaries. , 2011, Physical review letters.

[53]  P. Ajith Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins , 2011, 1107.1267.

[54]  J. Orosz,et al.  Measuring the spins of accreting black holes , 2011, 1101.0811.

[55]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[56]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[57]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[58]  Spain.,et al.  NGC 300 X‐1 is a Wolf–Rayet/black hole binary★ , 2010, 1001.4616.

[59]  A. Buonanno,et al.  An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.

[60]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[61]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[62]  S. Fairhurst Triangulation of gravitational wave sources with a network of detectors , 2009, 0908.2356.

[63]  Ernst Nils Dorband,et al.  Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins , 2009, 0907.0462.

[64]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[65]  P. Ajith,et al.  Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .

[66]  I. Mandel,et al.  Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.

[67]  Bernard J. Kelly,et al.  Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.

[68]  É. Racine Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.

[69]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[70]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[71]  I. Mandel,et al.  Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.

[72]  S. McWilliams,et al.  A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case , 2007, 0704.1964.

[73]  José A. González,et al.  Calibration of moving puncture simulations , 2006, gr-qc/0610128.

[74]  A. Zezas,et al.  The Orbital Period of the Wolf-Rayet Binary IC 10 X-1: Dynamic Evidence that the Compact Object Is a Black Hole , 2007, 0709.2892.

[75]  P. Ajith,et al.  A phenomenological template family for black-hole coalescence waveforms , 2007, 0704.3764.

[76]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[77]  José A. González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[78]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[79]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[80]  Y. Zlochower,et al.  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[81]  M. Hobson,et al.  General Relativity: An Introduction for Physicists , 2006 .

[82]  N. Christensen,et al.  Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data , 2006, gr-qc/0602067.

[83]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[84]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[85]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[86]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[87]  J. Schnittman Spin-orbit resonance and the evolution of compact binary systems , 2004, astro-ph/0409174.

[88]  E. W. Mielke,et al.  General relativistic boson stars , 2003, 0801.0307.

[89]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[90]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[91]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[92]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[93]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[94]  V. Kalogera Submitted to The Astrophysical Journal. Spin–Orbit Misalignment in Close Binaries with Two Compact Objects , 1999 .

[95]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[96]  Apostolatos Influence of spin-spin coupling on inspiraling compact binaries with M1=M2 and S1=S2. , 1996, Physical review. D, Particles and fields.

[97]  Vassiliki Kalogera,et al.  The Maximum Mass of a Neutron Star , 1996, astro-ph/9608059.

[98]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[99]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[100]  Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. , 1995, Physical review. D, Particles and fields.

[101]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[102]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[103]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[104]  Echeverría,et al.  Gravitational-wave measurements of the mass and angular momentum of a black hole. , 1989, Physical review. D, Particles and fields.

[105]  A. Krolak,et al.  Coalescing binaries—Probe of the universe , 1987 .

[106]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[107]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[108]  S. Detweiler BLACK HOLES AND GRAVITATIONAL WAVES. III. THE RESONANT FREQUENCIES OF ROTATING HOLES , 1980 .

[109]  Robert L. Forward,et al.  Wideband laser-interferometer gravitational-radiation experiment , 1978 .

[110]  D. C. Robinson Uniqueness of the Kerr black hole , 1975 .

[111]  L. Pietronero,et al.  On the maximum mass of a neutron star , 1974 .

[112]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[113]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[114]  I. Newton Philosophiæ naturalis principia mathematica , 1973 .

[115]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[116]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[117]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[118]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[119]  A. Peres Classical Radiation Recoil , 1962 .

[120]  L. M. M.-T. Theory of Probability , 1929, Nature.

[121]  H. Jeffreys The Theory of Probability , 1896 .