New Fe/SiO2 Materials Prepared using Diiron Molecular Precursors: Synthesis, Characterization and Catalysis

[1]  L. Que,et al.  Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. , 2004, Chemical reviews.

[2]  Q. Zhu,et al.  Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3: I. Physicochemical characterization , 2004 .

[3]  F. Walker,et al.  Models of the bis-histidine-ligated electron-transferring cytochromes. Comparative geometric and electronic structure of low-spin ferro- and ferrihemes. , 2004, Chemical reviews.

[4]  J. A. Ryder,et al.  Density functional theory study of benzene oxidation over Fe-ZSM-5 , 2003 .

[5]  J. Nagy,et al.  Isomorphously substituted Fe-ZSM-5 zeolites as catalysts , 2003 .

[6]  J. A. Ryder,et al.  X-ray Absorption Fine Structure Characterization of the Local Structure of Fe in Fe−ZSM-5 , 2003 .

[7]  R. Friesner,et al.  Mechanistic studies on the hydroxylation of methane by methane monooxygenase. , 2003, Chemical reviews.

[8]  T. Tilley,et al.  Design and synthesis of heterogeneous catalysts: the thermolytic molecular precursor approach , 2003 .

[9]  B. Gates,et al.  Reactions of Au(CH3)2(acac) on γ-Al2O3: Characterization of the surface organic, organometallic, metal oxide, and metallic species , 2003 .

[10]  H. Shioyama,et al.  Simple Preparation Method of Isolated Iron (III) Species on Silica Surface , 2003 .

[11]  A. Bell,et al.  Synthesis, characterization, and catalytic performance of single-site iron(III) centers on the surface of SBA-15 silica. , 2002, Journal of the American Chemical Society.

[12]  K. Tatsumi,et al.  Synthesis and reactions of triphenylsilanethiolato complexes of manganese(II), iron(II), cobalt(II), and nickel(II). , 2002, Inorganic chemistry.

[13]  P. Magusin,et al.  N2O Decomposition over Fe/ZSM-5: Effect of High-Temperature Calcination and Steaming , 2002 .

[14]  J. Nagy,et al.  X-ray diffraction and Mössbauer characterization of an Fe/SiO2 catalyst for the synthesis of carbon nanotubes , 2002 .

[15]  A. Ueda,et al.  Optimization of Fe/SiO2 based metal oxides as selective oxidation catalyst of propane with combinatorial approach , 2002 .

[16]  I. Arends,et al.  The Characterization of FeZSM-5 by 57Fe Mössbauer Spectroscopy: Sensitivity Towards Nitrogen , 2002 .

[17]  Tsunehiro Tanaka,et al.  TiO2/SiO2 photocatalysts at low levels of loading: preparation, structure and photocatalysis , 2002 .

[18]  M. Kishida,et al.  Catalytic properties of Fe/SiO2 catalysts prepared using microemulsion for CO hydrogenation , 2002 .

[19]  A. A. Shteinman,et al.  Evolution of Iron States and Formation of α-Sites upon Activation of FeZSM-5 Zeolites , 2002 .

[20]  I. Arends,et al.  Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation , 2002 .

[21]  K. Hidajat,et al.  Effect of ZrO2 Loading on the Structure, Acidity, and Catalytic Activity of the SO42−/ZrO2/MCM-41 Acid Catalyst , 2002 .

[22]  L. Zakharov,et al.  Cobalt(II) and iron(II) tris(trimethylsilyl)siloxides: synthesis, structure and reactivity , 2002 .

[23]  Tran Thi Kim Hoa,et al.  Characterization and activity of Fe-ZSM-5 catalysts for the total oxidation of phenol in aqueous solutions , 2001 .

[24]  T. Tilley,et al.  An efficient, single-source molecular precursor to silicoaluminophosphates. , 2001, Journal of the American Chemical Society.

[25]  P. Stavropoulos,et al.  The gif paradox. , 2001, Accounts of chemical research.

[26]  P. Selvam,et al.  Coexistence of paramagnetic and superparamagnetic Fe(III) in mesoporous MCM-41 silicates , 2001 .

[27]  M. White,et al.  A synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2. , 2001, Journal of the American Chemical Society.

[28]  J. Védrine,et al.  Importance of site isolation in the oxidation of isobutyric acid to methacrylic acid on iron phosphate catalysts , 2001 .

[29]  John Meurig Thomas On the nature of isolated active sites in open-structure catalysts for the aerial oxidation of alkanes , 2001 .

[30]  R. Grasselli Genesis of site isolation and phase cooperation in selective oxidation catalysis , 2001 .

[31]  J. Volta Site isolation for light hydrocarbons oxidation , 2001 .

[32]  J. E. Lyons,et al.  Catalysis research of relevance to carbon management: progress, challenges, and opportunities. , 2001, Chemical reviews.

[33]  R. Sheldon,et al.  Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O , 2000 .

[34]  R. T. Yang,et al.  Characterization of Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia , 2000 .

[35]  C. Copéret,et al.  Low-Temperature Hydrogenolysis of Alkanes Catalyzed by a Silica-Supported Tantalum Hydride Complex, and Evidence for a Mechanistic Switch from Group IV to Group V Metal Surface Hydride Complexes , 2000 .

[36]  R. Prins,et al.  Fe/ZSM-5 Prepared by Sublimation of FeCl3: The Structure of the Fe Species as Determined by IR, 27Al MAS NMR, and EXAFS Spectroscopy , 2000 .

[37]  D. Koningsberger,et al.  XAFS characterization of the binuclear iron complex in overexchanged Fe/ZSM5 – structure and reactivity , 2000 .

[38]  R. McCormick,et al.  Methane partial oxidation by silica‐supported iron phosphate catalysts. Influence of iron phosphate content on selectivity and catalyst structure , 2000 .

[39]  G H Loew,et al.  Role of the heme active site and protein environment in structure, spectra, and function of the cytochrome p450s. , 2000, Chemical reviews.

[40]  I. Rietjens,et al.  Characterization of Iron(III) Tetramesitylporphyrin and Microperoxidase-8 Incorporated into the Molecular Sieve MCM-41. , 1999, Inorganic chemistry.

[41]  A. Bell,et al.  Investigations of the State of Fe in H–ZSM-5 , 1999 .

[42]  Q. Xin,et al.  Surface Coordination Structure of Molybdate with Extremely Low Loading on γ-Alumina Characterized by UV Resonance Raman Spectroscopy , 1999 .

[43]  R. Neumann,et al.  Biomimetic Oxidation Studies. 11. Alkane Functionalization in Aqueous Solution Utilizing in Situ Formed [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+), as an MMO Model Precatalyst, Embedded in Surface-Derivatized Silica and Contained in Micelles. , 1999, Inorganic chemistry.

[44]  R. W. Joyner,et al.  Preparation, Characterization, and Performance of Fe−ZSM-5 Catalysts , 1999 .

[45]  L. Que,et al.  Crystal structure of a synthetic high-valent complex with an FE2(μ- O)2 diamond core. Implications for the core structures of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X , 1999 .

[46]  Stephen J. Lippard,et al.  Mechanistic studies of the reaction of reduced methane monooxygenase hydroxylase with dioxygen and substrates , 1999 .

[47]  S. Goldstein,et al.  Comments on the Mechanism of the “Fenton-Like” Reaction , 1999 .

[48]  K. Lazar,et al.  Oxygen transfer centers in Fe-FER and Fe-MFI zeolites: redox behavior and Debye temperature derived from in situ Mössbauer spectra , 1999 .

[49]  M. Shelef,et al.  In situ high-temperature ESR characterization of FeZSM-5 and FeSAPO-34 catalysts in flowing mixtures of NO, C3H6, and O2 , 1998 .

[50]  V. Sobolev,et al.  Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites , 1998 .

[51]  R. Sheldon,et al.  Heterogeneous Catalysts for Liquid-Phase Oxidations: Philosophers' Stones or Trojan Horses? , 1998 .

[52]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[53]  V. Dufaud,et al.  Catalytic Hydrogenolysis at Low Temperature and Pressure of Polyethylene and Polypropylene to Diesels or Lower Alkanes by a Zirconium Hydride Supported on Silica-Alumina: A Step Toward Polyolefin Degradation by the Microscopic Reverse of Ziegler-Natta Polymerization. , 1998, Angewandte Chemie.

[54]  Cécile Rosier,et al.  Catalytic Hydrogenolysis and Isomerization of Light Alkanes over the Silica-Supported Titanium Hydride Complex (⋮SiO)3TiH , 1997 .

[55]  B. Weckhuysen,et al.  Catalytic Conversion of Methane into Aromatic Hydrocarbons over Iron Oxide Loaded ZSM‐5 Zeolites , 1997 .

[56]  S. Scott,et al.  Characterization of Silica-Supported Vanadium(V) Complexes Derived from Molecular Precursors and Their Ligand Exchange Reactions , 1997 .

[57]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[58]  John D. Lipscomb,et al.  Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters. , 1996, Chemical reviews.

[59]  R. Ho,et al.  Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. , 1996, Chemical reviews.

[60]  D. T. Sawyer,et al.  Metal [MLx; M = Fe, Cu, Co, Mn]/Hydroperoxide-Induced Activation of Dioxygen for the Oxygenation of Hydrocarbons: Oxygenated Fenton Chemistry , 1996 .

[61]  S. Woo,et al.  The effect of Ni loading and the sulfidation temperature on the structure and catalytic activity of NiW hydrodesulfurization catalysts , 1996 .

[62]  Lawrence Que,et al.  Modeling the Oxygen Activation Chemistry of Methane Monooxygenase and Ribonucleotide Reductase , 1996 .

[63]  F. Frusteri,et al.  Effect of vanadia loading in propane oxidative dehydrogenation on V2O5/SiO2 catalysts , 1996 .

[64]  C. Lamberti,et al.  Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods , 1996 .

[65]  K. A. Dubkov,et al.  Selective oxidation of methane to methanol on a FeZSM-5 surface , 1995 .

[66]  D. Goldfarb,et al.  Characterization of Iron in Zeolites by X-band and Q-Band ESR, Pulsed ESR, and UV-Visible Spectroscopies , 1994 .

[67]  Stephen J. Lippard,et al.  Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane , 1993, Nature.

[68]  S. Goto,et al.  Liquid-phase oxidation of benzene to phenol over supported iron salts , 1993 .

[69]  D. Neckers,et al.  Functionalization of silica gel: application for the catalytic oxidation of alkanes , 1991 .

[70]  R. Zoellner A reusable apparatus for the convenient determination of the molecular weight of air- or moisture-sensitive compounds , 1990 .

[71]  S. Geib,et al.  Preparation and characterization of the monomeric copper(II) siloxide complex Cu[OSi(OCMe3)3]2(py)2 , 1989 .

[72]  K. Rypdal,et al.  Synthesis of bis[bis(trimethylsilyl)amido]iron(II). Structure and bonding in M[N(SiMe3)2]2 (M = manganese, iron, cobalt): two-coordinate transition-metal amides , 1988 .

[73]  G. Long,et al.  Preparation, electronic properties, and structure of a binuclear iron(III) complex containing a four-membered iron-oxygen ring , 1970 .

[74]  Y. Abe,et al.  Alkoxysilanes. II. Preparation of Tributoxysiloxychlorosilanes, Silanols, and Their Polymeric Substances , 1969 .

[75]  G. Long,et al.  On the Nature of the Spin States in Some Binuclear Iron (III) Complexes , 1968 .

[76]  S. Pratsinis,et al.  OH Surface Density of SiO 2 and TiO 2 by Thermogravimetric Analysis , 2003 .

[77]  A. A. Shteinman,et al.  The state of iron in the Fe-ZSM-5-N2O system for selective oxidation of methane to methanol from data of Mössbauer spectroscopy , 1998 .

[78]  P. Giannoccaro,et al.  INTERACTION OF MOLECULAR-OXYGEN WITH BIS(TRIPHENYLPHOSPHINE)-DICHLORO AND BIS(TRIPHENYLPHOSPHINE OXIDE)-DICHLORO IRON(II) - SYNTHESIS AND SPECTRAL CHARACTERIZATION OF NEW BRIDGED IRON(III) DERIVATIVES , 1986 .

[79]  W. H. Armstrong,et al.  Convenient, high-yield synthesis of (Et4N)2[Fe2OCl6] , 1985 .

[80]  G. Long,et al.  Mössbauer Spectroscopy and the Coordination Chemistry of Iron , 1984 .