Theory of oligonucleotide stabilization. I. The effect of single‐strand stacking

Certain theoretical difficulties present in the analysis of thermal transition properties of short complementary double‐stranded RNA oligomers can be resolved in part by introducing the stability of the component single‐stranded systems explicitly into the model. The stability constant S of the usual theories is redefined so as to contain double‐stranded pairing (τt) and single‐stranded stacking (ρ) contributions, and we analyze the statistics of two experimental systems—acid oligo(A) and oligo (An·Un) dimers—to exhibit the underlying stability parameters. We present a fitting procedure to extract values of the heats and entropies of the separated components when the required single‐strand data is unreliable or not available. The theory leads to length dependent heats and entropies for short single strands in a natural way, and permits a more accurate assessment of the contribution of partially bonded states in thermal transitions than has previously been possible.

[1]  E. Richards 5S RNA. An analysis of possible base pairing schemes. , 2005, European journal of biochemistry.

[2]  I. Tinoco,et al.  Stability of RNA hairpin loops: A6-Cm-U6 , 1973 .

[3]  D. Crothers,et al.  Free energy of imperfect nucleic acid helices. II. Small hairpin loops. , 1973, Journal of molecular biology.

[4]  O. Uhlenbeck Complementary oligonucleotide binding to transfer RNA. , 1972, Journal of molecular biology.

[5]  W. Gratzer,et al.  The nature of stacking equilibria in polynucleotides , 1972, Biopolymers.

[6]  M. Eigen,et al.  Co-operative non-enzymic base recognition. 3. Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. , 1971, Journal of molecular biology.

[7]  D M Crothers,et al.  Relaxation kinetics of dimer formation by self complementary oligonucleotides. , 1971, Journal of molecular biology.

[8]  D. Crothers Statistical thermodynamics of nucleic acid melting transitions with coupled binding equilibria , 1971, Biopolymers.

[9]  D. Porschke Cooperative nonenzymic base recognition II. thermodynamics of the helix-coil transition of oligoadenylic + oligouridylic acids† , 1971 .

[10]  P. Doty,et al.  Self-complementary oligoribonucleotides: adenylic acid-uridylic acid block copolymers. , 1971, Journal of molecular biology.

[11]  R. L. Baldwin,et al.  Helix formation by d(TA) oligomers. 3. Electrostatic effects. , 1970, Journal of molecular biology.

[12]  M. Eigen,et al.  Co-operative non-enzymic base recognition. I. Thermodynamics of the helix-coil transition of oligoriboadenylic acids at ACIDIC PH. , 1970, Journal of molecular biology.

[13]  G. Felsenfeld,et al.  Conformation of polyribouridylic acid in solution. , 1970, Journal of molecular biology.

[14]  R. L. Baldwin,et al.  Helix formation by d(TA) oligomers. II. Analysis of the helix-coli transitions of linear and circular oligomers. , 1970, Journal of molecular biology.

[15]  P. Doty,et al.  Derivation of the Secondary Structure of 5S RNA from its Binding of Complementary Oligonucleotides , 1970, Nature.

[16]  M. Levitt Detailed Molecular Model for Transfer Ribonucleic Acid , 1969, Nature.

[17]  E. Neumann,et al.  Thermodynamic investigation of the helix-coil transitions of a polyribonucleotide system , 1969 .

[18]  N. Kallenbach Theory of thermal transitions in low molecular weight RNA chains. , 1968, Journal of molecular biology.

[19]  E. Richards On the analysis of melting curves of stacked polynucleotides. , 1968, European journal of biochemistry.

[20]  R. L. Baldwin,et al.  Helix formation by dAT oligomers. I. Hairpin and straight-chain helices. , 1968, Journal of molecular biology.

[21]  I. Raacke "Cloverleaf" conformation for 5S RNAs. , 1968, Biochemical and biophysical research communications.

[22]  J. Sturtevant,et al.  Heats of the helix–coil transitions of the poly A–poly U complexes , 1968, Biopolymers.

[23]  I. Tinoco,et al.  Temperature‐dependent properties of dinucleoside phosphates , 1968, Biopolymers.

[24]  J. Massoulie Thermodynamique des associations de poly A et poly U en milieu neutre et alcalin , 1968 .

[25]  M. Leng,et al.  Polynucleotides: XI. Etude de la stabilite conformationelle de polynucleotides en fonction de la temperature , 1968 .

[26]  H. Boedtker,et al.  The ordered structure of 5S RNA. , 1967, Biochemical and biophysical research communications.

[27]  H. Eisenberg,et al.  Studies of the temperature-dependent conformation and phase separation of polyriboadenylic acid solutions at neutral pH. , 1967, Journal of molecular biology.

[28]  C. Cantor Possible Conformations of 5S Ribosomal RNA , 1967, Nature.

[29]  F. Sanger,et al.  Nucleotide Sequence of 5S-ribosomal RNA from Escherichia coli , 1967, Nature.

[30]  E. Richards,et al.  Spectrophotometric titration studies on poly (uridylic acid) , 1967 .

[31]  D. Crothers,et al.  On the Helix—Coil Transition in Heterogeneous Polymers , 1966 .

[32]  H. Scheraga,et al.  Cooperative interactions in single‐strand oligomers of adenylic acid , 1966, Biopolymers.

[33]  K. V. van Holde,et al.  Adenylate oligomers in single- and double-strand conformation. , 1966, Journal of molecular biology.

[34]  G. Felsenfeld,et al.  A study of polyadenylic acid at neutral pH. , 1966, Journal of molecular biology.

[35]  I. Tinoco,et al.  Absorption and optical rotatory dispersion of six dinucleoside phosphates. , 1965, Journal of molecular biology.

[36]  K. V. van Holde,et al.  Base interactions of nucleotide polymers in aqueous solution. , 1965, Journal of molecular biology.

[37]  D. Crothers,et al.  THE MELTING TRANSITION OF LOW-MOLECULAR-WEIGHT DNA: THEORY AND EXPERIMENT. , 1965, Journal of molecular biology.

[38]  I. Tinoco,et al.  Conformation of polyriboadenylic acid: pH and temperature dependence , 1965 .

[39]  J. Applequist,et al.  Thermodynamics of the Helix-Coil Equilibrium in Oligoadenylic Acid from Hypochromicity Studies , 1965 .

[40]  J. T. Madison,et al.  Structure of a Ribonucleic Acid , 1965, Science.

[41]  J. Witz,et al.  Structure transitions observed in DNA and poly A in solution as a function of temperature and pH , 1964 .

[42]  G. Felsenfeld,et al.  The conversion of two‐stranded poly (A + U) to, three‐strand poly (A + 2U) and poly A by heat , 1964 .

[43]  G. Fasman,et al.  THE HELICAL CONFORMATIONS OF POLYCYTIDYLIC ACID: STUDIES ON THE FORCES INVOLVED. , 1964, Biochemistry.

[44]  J. Applequist,et al.  Theory of the effects of concentration and chain length on helix-coil equilibria in two-stranded nucleic acids. , 1963, The Journal of chemical physics.

[45]  M. Chamberlin,et al.  AN ENZYMICALLY SYNTHESIZED RNA OF ALTERNATING BASE SEQUENCE: PHYSICAL AND CHEMICAL CHARACTERIZATION. , 1963, Journal of molecular biology.

[46]  J. R. Fresco,et al.  Polynucleotides. VI. Molecular properties and conformation of polyribouridylic acid , 1963 .

[47]  J. Sturtevant,et al.  On the Kinetics and Mechanism of Helix Formation: The Two Stranded Poly (A + U) Complex from Polyriboadenylic Acid and Polyribouridylic Acid , 1962 .

[48]  F. Crick,et al.  The molecular structure of polyadenylic acid. , 1961, Journal of molecular biology.

[49]  B. Zimm Theory of ``Melting'' of the Helical Form in Double Chains of the DNA Type , 1960 .

[50]  B. Alberts,et al.  Some Molecular Details of the Secondary Structure of Ribonucleic Acid , 1960, Nature.

[51]  J. Sturtevant,et al.  THE KINETICS OF DOUBLE HELIX FORMATION FROM POLYRIBOADENYLIC ACID AND POLYRIBOURIDYLIC ACID. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[52]  P. Ross,et al.  A simple model of the reaction between polyadenylic acid and polyuridylic acid. , 1960, Biochemical and biophysical research communications.

[53]  T. L. Hill Generalization of the One‐Dimensional Ising Model Applicable to Helix Transitions in Nucleic Acids and Proteins , 1959 .

[54]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[55]  J. T. Madison Primary structure of RNA. , 1968, Annual review of biochemistry.

[56]  Lynn C. Klotz,et al.  A New Spectroscopic Approach to the Determination of Helical Secondary Structure in Ribonucleic Acids , 1963 .