The knapsack problem: A survey

A unifying survey of the literature related to the knapsack problem; that is, maximize , subject to and xi ⩾ 0, integer; where vi, wi and W are known integers, and wi (i = 1, 2, …, N) and W are positive. Various uses, including those in group theory and in other integer programming algorithms, as well as applications from the literature, are discussed. Dynamic programming, branch and bound, search enumeration, heuristic methods, and other solution techniques are presented. Computational experience, and extensions of the knapsack problem, such as to the multi-dimensional case, are also considered.

[1]  James R. Morris A Model for Corporate Debt Maturity Decisions , 1976, Journal of Financial and Quantitative Analysis.

[2]  K. Spielberg,et al.  Mixed-integer algorithms for the (0,l) knapsack problem , 1972 .

[3]  Jeremy F. Shapiro,et al.  Generalized Lagrange Multipliers in Integer Programming , 2011, Oper. Res..

[4]  Ferydoon Kianfar Stronger Inequalities for 0, 1 Integer Programming Using Knapsack Functions , 1971, Oper. Res..

[5]  Gordon H. Bradley,et al.  Transformation of integer programs to knapsack problems , 1971, Discret. Math..

[6]  B. L. Fox,et al.  Searching for the Multiplier in One-Constraint Optimization Problems , 1970, Oper. Res..

[7]  A. Victor Cabot,et al.  An Enumeration Algorithm for Knapsack Problems , 1970, Oper. Res..

[8]  V. E. Unger,et al.  Capital Budgeting and Mixed Zero-One Integer Programming , 1970 .

[9]  S. Vajda,et al.  Integer Programming and Network Flows , 1970 .

[10]  H. Greenberg,et al.  A Branch Search Algorithm for the Knapsack Problem , 1970 .

[11]  Egon Balas,et al.  Duality in Discrete Programming: II. The Quadratic Case , 1969 .

[12]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[13]  G. Nemhauser,et al.  Discrete Dynamic Programming and Capital Allocation , 1969 .

[14]  F. Glover Integer Programming over a Finite Additive Group , 1969 .

[15]  Harold Greenberg An algorithm for the computation of knapsack functions , 1969 .

[16]  James C. T. Mao,et al.  An Extension of Lawler and Bell's Method of Discrete Optimization with Examples from Capital Budgeting , 1968 .

[17]  George L. Nemhauser,et al.  Letter to the Editor - A Note on the Generalized Lagrange Multiplier Solution to an Integer Programming Problem , 1968, Oper. Res..

[18]  Abraham Charnes,et al.  A Chance-Constrained Approach to Capital Budgeting with Portfolio Type Payback and Liquidity Constraints and Horizon Posture Controls , 1967, Journal of Financial and Quantitative Analysis.

[19]  Kurt Spielberg,et al.  Direct Search Algorithms for Zero-One and Mixed-Integer Programming , 1967, Oper. Res..

[20]  Seymour Kaplan Solution of the Lorie-Savage and Similar Integer Programming Problems by the Generalized Lagrange Multiplier Method , 1966, Oper. Res..

[21]  Ralph E. Gomory,et al.  The Theory and Computation of Knapsack Functions , 1966, Oper. Res..

[22]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[23]  Saul Shapiro The M-Server Queue with Poisson Input and Gamma-Distributed Service of Order Two , 1966, Oper. Res..

[24]  H. Weingartner Capital Budgeting of Interrelated Projects: Survey and Synthesis , 1966 .

[25]  Arthur M. Geoffrion,et al.  Letter to the Editor - Finding Everett's Lagrange Multipliers by Linear Programming , 1966, Operational Research.

[26]  Bertil Naslund,et al.  A Model of Capital Budgeting Under Risk , 1966 .

[27]  Richard E. Quandt,et al.  Investment and Discount Rates Under Capital Rationing—A Programming Approach , 1965 .

[28]  R E Gomory,et al.  ON THE RELATION BETWEEN INTEGER AND NONINTEGER SOLUTIONS TO LINEAR PROGRAMS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Gomory,et al.  Multistage Cutting Stock Problems of Two and More Dimensions , 1965 .

[30]  A. A. Robichek,et al.  Mathematical Programming and the Analysis of Capital Budgeting Problems. , 1964 .

[31]  Joel Cord,et al.  A Method for Allocating Funds to Investment Projects when Returns are Subject to Uncertainty , 1964 .

[32]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[33]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[34]  R. Bellman,et al.  Applied Dynamic Programming , 1965 .

[35]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[36]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[37]  R. Bellman Letter to the Editor---Comment on Dantzig's Paper on Discrete Variable Extremum Problems , 1957 .

[38]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[39]  R. Bellman Notes on the theory of dynamic programming IV ‐ Maximization over discrete sets , 1955 .

[40]  Richard Bellman Some Applications of the Theory of Dynamic Programming - A Review , 1954, Oper. Res..

[41]  G. B. Mathews On the Partition of Numbers , 1896 .