Geometric Numerical Integration for Peakon b -Family Equations
暂无分享,去创建一个
[1] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[2] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.
[3] Giuseppe Maria Coclite,et al. Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation , 2007 .
[4] A. Constantin,et al. The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.
[5] Jie Shen,et al. Spectral and High-Order Methods with Applications , 2006 .
[6] M. Qin,et al. MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .
[7] Richard Beals,et al. Multipeakons and the Classical Moment Problem , 1999, solv-int/9906001.
[8] J. Bona,et al. Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[9] Håkon Hoel. ftp ejde.math.txstate.edu (login: ftp) A NUMERICAL SCHEME USING MULTI-SHOCKPEAKONS TO COMPUTE SOLUTIONS OF THE DEGASPERIS-PROCESI EQUATION , 2022 .
[10] Giuseppe Maria Coclite,et al. On the well-posedness of the Degasperis-Procesi equation , 2006 .
[11] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[12] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[13] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[14] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[15] Yinhua Xia,et al. Fourier Spectral Methods for Degasperis–Procesi Equation with Discontinuous Solutions , 2014, J. Sci. Comput..
[16] Xavier Raynaud,et al. Convergence of a spectral projection of the Camassa‐Holm equation , 2006 .
[17] Yuto Miyatake,et al. Conservative finite difference schemes for the Degasperis-Procesi equation , 2012, J. Comput. Appl. Math..
[18] Y. Liu,et al. An operator splitting method for the Degasperis-Procesi equation , 2009, J. Comput. Phys..
[19] H. Kalisch,et al. Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .
[20] S. Reich,et al. Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .
[21] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[22] Darryl D. Holm,et al. A New Integrable Shallow Water Equation , 1994 .
[23] Hans Lundmark,et al. Multi-peakon solutions of the Degasperis–Procesi equation , 2003, nlin/0503033.
[24] Nianyu Yi,et al. A conservative discontinuous Galerkin method for the Degasperis-Procesi equation , 2014 .
[25] Giuseppe Gaeta,et al. Symmetry and perturbation theory , 2005 .
[26] Yoshimasa Matsuno,et al. The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.
[27] Joachim Escher,et al. Global weak solutions and blow-up structure for the Degasperis–Procesi equation , 2006 .
[28] Chi-Wang Shu,et al. Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..
[29] D. Sattinger,et al. Multi-peakons and a theorem of Stieltjes , 1999, solv-int/9903011.
[30] Zhaoyang Yin,et al. Global Existence and Blow-Up Phenomena for the Degasperis-Procesi Equation , 2006 .
[31] Giuseppe Maria Coclite,et al. ON THE UNIQUENESS OF DISCONTINUOUS SOLUTIONS TO THE DEGASPERIS–PROCESI EQUATION , 2007 .
[32] Hans Lundmark,et al. Degasperis-Procesi peakons and the discrete cubic string , 2005, nlin/0503036.
[33] Darryl D. Holm,et al. A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.
[34] M. Suzuki,et al. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .
[35] Yoshimasa Matsuno,et al. Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit , 2005 .
[36] Meng-zhaoQin,et al. A MULTI-SYMPLECTIC SCHEME FOR RLW EQUATION , 2004 .
[37] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[38] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[39] Peter J. Olver,et al. On the Hamiltonian structure of evolution equations , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.
[40] Chi-Wang Shu,et al. Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation , 2011 .
[41] Tony W. H. Sheu,et al. A dispersively accurate compact finite difference method for the Degasperis-Procesi equation , 2013, J. Comput. Phys..
[42] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[43] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[44] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[45] R. Johnson,et al. Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.
[46] Antonio Degasperis,et al. Symmetry and perturbation theory , 1999 .
[47] Hans Lundmark,et al. Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..
[48] Brynjulf Owren,et al. Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..