Geometric Numerical Integration for Peakon b -Family Equations

In this paper, we study the Camassa-Holm equation and the DegasperisProcesi equation. The two equations are in the family of integrable peakon equations, and both have very rich geometric properties. Based on these geometric structures, we construct the geometric numerical integrators for simulating their soliton solutions. The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties, however they also have the significant difference, for example there exist the shock wave solutions for the Degasperis-Procesi equation. By using the symplectic Fourier pseudo-spectral integrator, we simulate the peakon solutions of the two equations. To illustrate the smooth solitons and shock wave solutions of the DP equation, we use the splitting technique and combine the composition methods. In the numerical experiments, comparisons of these two kinds of methods are presented in terms of accuracy, computational cost and invariants preservation. AMS subject classifications: 35L65, 65M70, 65N06, 65P10, 74J40

[1]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[2]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[3]  Giuseppe Maria Coclite,et al.  Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation , 2007 .

[4]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[5]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[6]  M. Qin,et al.  MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHR ¨ ODINGER EQUATION , 2001 .

[7]  Richard Beals,et al.  Multipeakons and the Classical Moment Problem , 1999, solv-int/9906001.

[8]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  Håkon Hoel ftp ejde.math.txstate.edu (login: ftp) A NUMERICAL SCHEME USING MULTI-SHOCKPEAKONS TO COMPUTE SOLUTIONS OF THE DEGASPERIS-PROCESI EQUATION , 2022 .

[10]  Giuseppe Maria Coclite,et al.  On the well-posedness of the Degasperis-Procesi equation , 2006 .

[11]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[12]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[13]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[14]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[15]  Yinhua Xia,et al.  Fourier Spectral Methods for Degasperis–Procesi Equation with Discontinuous Solutions , 2014, J. Sci. Comput..

[16]  Xavier Raynaud,et al.  Convergence of a spectral projection of the Camassa‐Holm equation , 2006 .

[17]  Yuto Miyatake,et al.  Conservative finite difference schemes for the Degasperis-Procesi equation , 2012, J. Comput. Appl. Math..

[18]  Y. Liu,et al.  An operator splitting method for the Degasperis-Procesi equation , 2009, J. Comput. Phys..

[19]  H. Kalisch,et al.  Numerical study of traveling-wave solutions for the Camassa-Holm equation , 2005 .

[20]  S. Reich,et al.  Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations , 2001 .

[21]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[22]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[23]  Hans Lundmark,et al.  Multi-peakon solutions of the Degasperis–Procesi equation , 2003, nlin/0503033.

[24]  Nianyu Yi,et al.  A conservative discontinuous Galerkin method for the Degasperis-Procesi equation , 2014 .

[25]  Giuseppe Gaeta,et al.  Symmetry and perturbation theory , 2005 .

[26]  Yoshimasa Matsuno,et al.  The N-soliton solution of the Degasperis–Procesi equation , 2005, nlin/0511029.

[27]  Joachim Escher,et al.  Global weak solutions and blow-up structure for the Degasperis–Procesi equation , 2006 .

[28]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[29]  D. Sattinger,et al.  Multi-peakons and a theorem of Stieltjes , 1999, solv-int/9903011.

[30]  Zhaoyang Yin,et al.  Global Existence and Blow-Up Phenomena for the Degasperis-Procesi Equation , 2006 .

[31]  Giuseppe Maria Coclite,et al.  ON THE UNIQUENESS OF DISCONTINUOUS SOLUTIONS TO THE DEGASPERIS–PROCESI EQUATION , 2007 .

[32]  Hans Lundmark,et al.  Degasperis-Procesi peakons and the discrete cubic string , 2005, nlin/0503036.

[33]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[34]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[35]  Yoshimasa Matsuno,et al.  Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit , 2005 .

[36]  Meng-zhaoQin,et al.  A MULTI-SYMPLECTIC SCHEME FOR RLW EQUATION , 2004 .

[37]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[38]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[39]  Peter J. Olver,et al.  On the Hamiltonian structure of evolution equations , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for the Degasperis-Procesi Equation , 2011 .

[41]  Tony W. H. Sheu,et al.  A dispersively accurate compact finite difference method for the Degasperis-Procesi equation , 2013, J. Comput. Phys..

[42]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[43]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[44]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[45]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[46]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[47]  Hans Lundmark,et al.  Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..

[48]  Brynjulf Owren,et al.  Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..