Treewidth and Minimum Fill-in of Weakly Triangulated Graphs

We use the notion of potential maximal clique to characterize the maximal cliques appearing in minimal triangulations of a graph. We show that if these objects can be listed in polynomial time for a class of graphs, the treewidth and the minimum fill-in are polynomially tractable for these graphs. Finally we show how to compute in polynomial time the potential maximal cliques of weakly triangulated graphs.

[1]  Chak-Kuen Wong,et al.  Minimum Fill-in on Circle and Circular-Arc Graphs , 1998, J. Algorithms.

[2]  Jeremy P. Spinrad,et al.  Algorithms for Weakly Triangulated Graphs , 1995, Discret. Appl. Math..

[3]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[4]  Chính T. Hoàng,et al.  Optimizing weakly triangulated graphs , 1990, Graphs Comb..

[5]  Dieter Kratsch,et al.  Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1995, J. Algorithms.

[6]  Dieter Kratsch,et al.  Treewidth of Chordal Bipartite Graphs , 1993, J. Algorithms.

[7]  Dieter Kratsch,et al.  Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.

[8]  A. Asensio Structural and Algorithmic Aspects of Chordal Graph Embeddings , 1996 .

[9]  Ton Kloks,et al.  Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs , 1997, WG.

[10]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..

[11]  Ton Kloks,et al.  Treewidth of Circle Graphs , 1993, ISAAC.

[12]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[13]  G. Dirac On rigid circuit graphs , 1961 .

[14]  Andreas Parra,et al.  Characterizations and Algorithmic Applications of Chordal Graph Embeddings , 1997, Discret. Appl. Math..

[15]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[16]  Maw-Shang Chang,et al.  Algorithms for Maximum Matching and Minimum Fill-in on Chordal Bipartite Graphs , 1996, ISAAC.

[17]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[18]  Jeremy P. Spinrad,et al.  On Treewidth and Minimum Fill-In of Asteroidal Triple-Free Graphs , 1997, Theor. Comput. Sci..

[19]  Dieter Kratsch,et al.  The ESA '93 Proceedings , 1994 .

[20]  C. Wong,et al.  Minimum Ll-in on Circle and Circular-arc Graphs , 1996 .

[21]  Ioan Todinca,et al.  Minimal Triangulations for Graphs with "Few" Minimal Separators , 1998, ESA.