The low-temperature behavior of disordered magnets

We map out the low-temperature phase diagrams of dilute Ising ferromagnets and predominantly ferromagnetic ferrites, obtaining nonperturbative and essentially optimal conditions on the density of ferromagnetic couplings required to maintain long-range order. We also study mappings of dilute antiferromagnets in a uniform field onto random field ferromagnets.For the randomly dilute systems, we prove that ferromagnetically ordered states exist at low temperature if the density of ferromagnetic couplings exceeds the (appropriately defined) percolation threshold, thereby extending the result of Georgii to three or more dimensions. We also show that, for these systems, as the temperature tends to zero, the magnetization approaches the percolation probability of the corresponding Bernoulli system. In two dimensions, we prove that low-temperature ordering persists in the presence of antiferromagnetic impurities if the ferromagnetic couplings percolate and if the density of antiferromagnetic couplings is bounded above by the order of the inverse square of the corresponding percolation correlation length. For these systems, we rigorously compute the first order decrease in the zero-temperature nominal spontaneous magnetization, in terms of derivatives of the percolation probability, thereby establishing the existence of ferrimagnetically ordered states. Finally, we introduce a model of a random ferrite which exhibits spontaneous magnetization anticorrelated with the boundary conditions.

[1]  Amnon Aharony,et al.  Tricritical points in systems with random fields , 1978 .

[2]  T. E. Harris A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  H. Georgii On the ferromagnetic and the percolative region of random spin systems , 1984, Advances in Applied Probability.

[4]  H. Georgii Spontaneous magnetization of randomly dilute ferromagnets , 1981 .

[5]  A. B. Harris Upper bounds for the transition temperatures of generalized Ising models , 1974 .

[6]  L. Russo An approximate zero-one law , 1982 .

[7]  R. Birgeneau,et al.  Spin fluctuations in random magnetic-nonmagnetic two-dimensional antiferromagnets. III. An Ising system , 1980 .

[8]  M. Suzuki,et al.  Magnetic specific heat of Rb2CocMg1-cF4: effect of dilution on a two-dimensional Ising-like antiferromagnet , 1978 .

[9]  Yoseph Imry,et al.  Random-Field Instability of the Ordered State of Continuous Symmetry , 1975 .

[10]  H. Kunz,et al.  Essential singularity in percolation problems and asymptotic behavior of cluster size distribution , 1978 .

[11]  L. Russo A note on percolation , 1978 .

[12]  Aizenman Absence of an intermediate phase for a general class of one-component ferromagnetic models. , 1985, Physical review letters.

[13]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[14]  S. Sherman,et al.  General Griffiths' Inequalities on Correlations in Ising Ferromagnets , 1968 .

[15]  Robert B. Griffiths,et al.  Peierls Proof of Spontaneous Magnetization in a Two-Dimensional Ising Ferromagnet , 1964 .

[16]  J. Lebowitz GHS and other inequalities , 1974 .

[17]  D. Welsh,et al.  Percolation probabilities on the square lattice , 1978 .

[18]  I. Korenblit,et al.  Ferromagnetism of disordered systems , 1978 .

[19]  J. Lebowitz,et al.  Random Spin Systems: Some Rigorous Results , 1968 .

[20]  A. Aharony,et al.  Critical properties of a simple soluble spin glass model , 1976 .

[21]  L. Schulman,et al.  Ground state degeneracy and ferromagnetism in a spin glass , 1981 .

[22]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[23]  H. Kesten Percolation theory for mathematicians , 1982 .

[24]  G. Roepstorff The Peierls–Griffiths argument for disordered Ising systems , 1981 .

[25]  H. Falk,et al.  Correlation function and transition temperature bounds for bond-disordered Ising systems , 1975 .

[26]  T. K. Bergstresser Rigorous upper and lower bounds on the critical temperature in Ising models with random, quenched, broken-bond disorder , 1977 .

[27]  M. Aizenman,et al.  Lower bounds on the cluster size distribution , 1980 .

[28]  R. Griffiths,et al.  The order parameter in a spin glass , 1983 .

[29]  A. Aharony Spin-flop multicritical points in systems with random fields and in spin glasses , 1978 .

[30]  Robert B. Griffiths,et al.  Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet , 1969 .

[31]  J. Chayes,et al.  On a sharp transition from area law to perimeter law in a system of random surfaces , 1983 .

[32]  L. Russo On the critical percolation probabilities , 1981 .

[33]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[34]  A. Aharony,et al.  Random field effects in disordered anisotropic antiferromagnets , 1979 .

[35]  H. Kesten Analyticity properties and power law estimates of functions in percolation theory , 1981 .

[36]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[37]  R. Griffiths Correlations in Ising Ferromagnets. II. External Magnetic Fields , 1967 .

[38]  J. Hammersley Percolation Processes: Lower Bounds for the Critical Probability , 1957 .

[39]  Jürg Fröhlich,et al.  Improved perturbation expansion for disordered systems: Beating Griffiths singularities , 1984 .