Topological phase for entangled two-qubit states.

Entangled states play a crucial role in quantum physics, ranging from fundamental aspects to quantum information processing. We show here that entangled two-qubit states can also be used to characterize unambiguously the subtlety of the SO(3) rotation group topology. The well known two distinct families of path in this group are put in one-to-one correspondence with cyclic evolutions of these entangled states, resulting in a pi phase difference. We propose a simple quantum optics interference experiment to demonstrate this topological phase shift.

[1]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[2]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[3]  R. Mosseri,et al.  Geometry of entangled states, Bloch spheres and Hopf fibrations , 2001, quant-ph/0108137.

[4]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[5]  Gerald Badurek,et al.  Verification of coherent spinor rotation of fermions , 1975 .

[6]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[7]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[8]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[9]  Siddhartha Sen,et al.  Topology and geometry for physicists , 1983 .

[10]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[11]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[12]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  E. Sjöqvist Geometric phase for entangled spin pairs , 2000 .

[14]  R. Colella,et al.  Observation of the Phase Shift of a Neutron Due to Precession in a Magnetic Field , 1975 .

[15]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[16]  C. Brosseau Fundamentals of Polarized Light: A Statistical Optics Approach , 1998 .

[17]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .