Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B

[1]  Felix Bongomin,et al.  Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision , 2017, Journal of fungi.

[2]  N. Khalil,et al.  Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. , 2017, Journal de mycologie medicale.

[3]  H. Ferreira,et al.  Xanthomonas citri MinC Oscillates from Pole to Pole to Ensure Proper Cell Division and Shape , 2017, Front. Microbiol..

[4]  G. M. Soliman Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. , 2017, International journal of pharmaceutics.

[5]  A. Fusco-Almeida,et al.  Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis , 2017, Front. Microbiol..

[6]  S. Mitragotri,et al.  Role of nanoparticle size, shape and surface chemistry in oral drug delivery. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[7]  M. Chorilli,et al.  Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? , 2016, International journal of nanomedicine.

[8]  H. Santos,et al.  Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[9]  Shweta Sharma,et al.  PLGA-based nanoparticles: A new paradigm in biomedical applications , 2016 .

[10]  Dequan Zhang,et al.  The antifungal effect of silver nanoparticles on Trichosporon asahii. , 2016, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[11]  N. Khalil,et al.  Amphotericin B-loaded polymeric nanoparticles: formulation optimization by factorial design , 2016, Pharmaceutical development and technology.

[12]  L. Pagano,et al.  Reviewing the importance and evolution of fungal infections and potential antifungal resistance in haematological patients. , 2015, Journal of global antimicrobial resistance.

[13]  N. Khalil,et al.  Bovine Serum Albumin Nanoparticles Containing Amphotericin B: Characterization, Cytotoxicity and In Vitro Antifungal Evaluation. , 2015, Journal of nanoscience and nanotechnology.

[14]  A. Bocca,et al.  Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. , 2015, European journal of medicinal chemistry.

[15]  P. Sylvester,et al.  Cellular uptake, antioxidant and antiproliferative activity of entrapped α-tocopherol and γ-tocotrienol in poly (lactic-co-glycolic) acid (PLGA) and chitosan covered PLGA nanoparticles (PLGA-Chi). , 2015, Journal of colloid and interface science.

[16]  C. Astete,et al.  Biodistribution of PLGA and PLGA/chitosan nanoparticles after repeat-dose oral delivery in F344 rats for 7 days. , 2014, Therapeutic delivery.

[17]  B. Horrocks,et al.  Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization , 2014, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society.

[18]  K. Tomono,et al.  Distribution of Candida species isolated from blood cultures in hospitals in Osaka, Japan. , 2014, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[19]  Yoon-Sik Lee,et al.  Corrigendum to "Antimicrobial effects of silver nanoparticles" (Nanomed Nanotechnol Biol Med. 2007;1:95-101) , 2014 .

[20]  Wei Sun,et al.  Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[21]  A. Butt,et al.  Clinical practice guidelines for the management of invasive Candida infections in adults in the Middle East region: Expert panel recommendations. , 2014, Journal of infection and public health.

[22]  Xiangliang Yang,et al.  Pharmaceutical nanotechnology for oral delivery of anticancer drugs. , 2013, Advanced drug delivery reviews.

[23]  R. Hamill Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity , 2013, Drugs.

[24]  M. Dea-Ayuela,et al.  Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. , 2013, International journal of pharmaceutics.

[25]  R. Beck,et al.  Antifungal Activity of Nanocapsule Suspensions Containing Tea Tree Oil on the Growth of Trichophyton rubrum , 2013, Mycopathologia.

[26]  T. Calandra,et al.  ESCMID* guideline for the diagnosis and management of Candida diseases 2012: developing European guidelines in clinical microbiology and infectious diseases. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[27]  W. Weyenberg,et al.  PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and AmBisome. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[28]  A. Colombo,et al.  Brazilian guidelines for the management of candidiasis – a joint meeting report of three medical societies: Sociedade Brasileira de Infectologia, Sociedade Paulista de Infectologia and Sociedade Brasileira de Medicina Tropical , 2012, The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.

[29]  D. Kontoyiannis,et al.  Invasive fungal infections in patients with cancer in the Intensive Care Unit. , 2012, International journal of antimicrobial agents.

[30]  S. M. L. Seddiki,et al.  Candida albicans biofilms formed into catheters and probes and their resistance to amphotericin B. , 2011, Journal de mycologie medicale.

[31]  Anders Axelsson,et al.  The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. , 2011, International journal of pharmaceutics.

[32]  Patrick Boisseau,et al.  Nanomedicine, Nanotechnology in medicine , 2011 .

[33]  J. Ruiz-Contreras,et al.  [The Spanish Society of Paediatric Infectious Diseases (SEIP) recommendations on the diagnosis and management of invasive candidiasis]. , 2011, Anales de pediatria.

[34]  Pilar Martín-Dávila,et al.  [Guidelines for the treatment of Invasive Candidiasis and other yeasts. Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). 2010 Update]. , 2011, Enfermedades infecciosas y microbiologia clinica.

[35]  Samuel A. Lee,et al.  Emerging opportunistic yeast infections. , 2011, The Lancet. Infectious diseases.

[36]  S. Sheikh,et al.  Nanosomal Amphotericin B is an efficacious alternative to Ambisome for fungal therapy. , 2010, International journal of pharmaceutics.

[37]  Kinam Park,et al.  Pharmaceutical nanotechnology: Unmet needs in drug delivery. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[38]  J. Sobel,et al.  Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[39]  B. D. de Pauw,et al.  Present situation in the treatment of invasive fungal infection. , 2008, International journal of antimicrobial agents.

[40]  N. K. Jain,et al.  Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[41]  J. Torrado,et al.  Amphotericin B formulations and drug targeting. , 2008, Journal of pharmaceutical sciences.

[42]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[43]  F. Saliba,et al.  Néphrotoxicité de l'amphotéricine B : mise au point , 2006 .

[44]  V. Ponsinet,et al.  Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol. , 2002, Biochimica et biophysica acta.

[45]  S. Lynch,et al.  Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. , 2001, Chemistry & biology.

[46]  C. Schaffner,et al.  Polyene macrolide antibiotic amphotericin B. Crystal structure of the N-iodoacetyl derivative. , 1971, Journal of the American Chemical Society.

[47]  C. Cervera Formación médica continuada: Infección fúngica invasora Candidemia y candidiasis invasora en el adulto. Formas clínicas y tratamiento , 2016 .

[48]  N. Khalil,et al.  Poly(L-lactide) Nanoparticles Reduce Amphotericin B Cytotoxicity and Maintain Its In Vitro Antifungal Activity. , 2015, Journal of nanoscience and nanotechnology.

[49]  M. Pfaller,et al.  Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. , 2012, The American journal of medicine.

[50]  T. Boekhout,et al.  The Yeasts, a Taxonomic Study, 5th ed , 2011 .

[51]  R. Christen,et al.  Contributions to a revision of the genus Trichosporon. , 1992, Antonie van Leeuwenhoek.