Introduction to topological quantum computation with non-Abelian anyons

Topological quantum computers promise a fault tolerant means to perform quantum computation. Topological quantum computers use particles with exotic exchange statistics called non-Abelian anyons, and the simplest anyon model which allows for universal quantum computation by particle exchange or braiding alone is the Fibonacci anyon model. One classically hard problem that can be solved efficiently using quantum computation is finding the value of the Jones polynomial of knots at roots of unity. We aim to provide a pedagogical, self-contained, review of topological quantum computation with Fibonacci anyons, from the braiding statistics and matrices to the layout of such a computer and the compiling of braids to perform specific operations. Then we use a simulation of a topological quantum computer to explicitly demonstrate a quantum computation using Fibonacci anyons, evaluating the Jones polynomial of a selection of simple knots. In addition to simulating a modular circuit-style quantum algorithm, we also show how the magnitude of the Jones polynomial at specific points could be obtained exactly using Fibonacci or Ising anyons. Such an exact algorithm seems ideally suited for a proof of concept demonstration of a topological quantum computer.

[1]  U. Essmann,et al.  The direct observation of individual flux lines in type II superconductors , 1967 .

[2]  R. Mosseri A geometrical approach to SU(2) navigation with Fibonacci anyons , 2008, 0801.2860.

[3]  M. Zaletel,et al.  Fibonacci anyons and charge density order in the 12/5 and 13/5 quantum Hall plateaus , 2015, 1505.02843.

[4]  D. Thouless Topological Quantum Numbers in Nonrelativistic Physics , 1998 .

[5]  John Preskill,et al.  Lecture Notes for Physics 219: Quantum Computation , 2004 .

[6]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[7]  T. Simula,et al.  Kelvin waves of quantized vortex lines in trapped Bose-Einstein condensates. , 2008, Physical review letters.

[8]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[9]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[10]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[11]  P. Hakonen,et al.  Experiments on Vortices in Rotating Superfluid 3He-A , 1982 .

[12]  N R Cooper,et al.  Quantum phases of vortices in rotating Bose-Einstein condensates. , 2001, Physical review letters.

[13]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[14]  Steven T. Flammia,et al.  Classical Simulation of Quantum Error Correction in a Fibonacci Anyon Code , 2015, 1506.03815.

[15]  Louis H. Kauffman,et al.  Mathematics of Quantum Computation and Quantum Technology , 2007 .

[16]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[17]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[18]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[19]  Masahito Ueda,et al.  Collision dynamics and rung formation of non-Abelian vortices. , 2008, Physical review letters.

[20]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[21]  M. Freedman,et al.  Large quantum Fourier transforms are never exactly realized by braiding conformal blocks , 2006, cond-mat/0609411.

[22]  Xin Wan,et al.  Exploiting geometric degrees of freedom in topological quantum computing , 2008, 0812.2414.

[23]  Jiannis K. Pachos,et al.  Introduction to Topological Quantum Computation , 2012 .

[24]  M H Freedman,et al.  P/NP, and the quantum field computer , 1998, Proc. Natl. Acad. Sci. USA.

[25]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[26]  S. Simon,et al.  Topological quantum computing with Read-Rezayi states. , 2008, Physical review letters.

[27]  M. Weyland,et al.  Electron vortex production and control using aberration induced diffraction catastrophes. , 2013, Physical review letters.

[28]  Animesh Datta,et al.  QUANTUM DISCORD AND QUANTUM COMPUTING — AN APPRAISAL , 2011, 1109.5549.

[29]  Sean Wallis,et al.  Binomial Confidence Intervals and Contingency Tests: Mathematical Fundamentals and the Evaluation of Alternative Methods , 2013, J. Quant. Linguistics.

[30]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[31]  T. Stanescu Introduction to Topological Quantum Matter & Quantum Computation , 2016 .

[32]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[33]  Masahito Ueda,et al.  Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.

[34]  Jacob M. Taylor,et al.  Suppressing Spin Qubit Dephasing by Nuclear State Preparation , 2008, Science.

[35]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[36]  J. Kosterlitz,et al.  Nobel Lecture: Topological defects and phase transitions , 2017 .

[37]  E. C. Samson,et al.  Deterministic creation, pinning, and manipulation of quantized vortices in a Bose-Einstein condensate , 2015, 1508.05110.

[38]  S. Simon,et al.  Braid topologies for quantum computation. , 2005, Physical review letters.

[39]  Giuseppe Mussardo,et al.  Topological quantum hashing with the icosahedral group. , 2010, Physical review letters.

[40]  James R. Wootton,et al.  Error Correction for Non-Abelian Topological Quantum Computation , 2014 .

[41]  Magnus O Borgh,et al.  Core Structure and Non-Abelian Reconnection of Defects in a Biaxial Nematic Spin-2 Bose-Einstein Condensate. , 2016, Physical review letters.

[42]  J. Pachos,et al.  Why should anyone care about computing with anyons? , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[44]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[45]  Jason Alicea,et al.  Designer non-Abelian anyon platforms: from Majorana to Fibonacci , 2014, 1410.0359.

[46]  Thermal activation of vortex-antivortex pairs in quasi-two-dimensional Bose-Einstein condensates. , 2005, Physical review letters.

[47]  M. Troyer,et al.  Fibonacci topological order from quantum nets. , 2012, Physical review letters.

[48]  S. Simon,et al.  QUANTUM COMPUTING WITH NON-ABELIAN QUASIPARTICLES , 2007 .

[49]  R. Grimm,et al.  Bose-Einstein condensation of strontium. , 2009, Physical review letters.

[50]  D. Castelvecchi Silicon gains ground in quantum-computing race , 2018, Nature.

[51]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[52]  William T. M. Irvine,et al.  Creation and dynamics of knotted vortices , 2012, Nature Physics.

[53]  G. Collins Computing with quantum knots. , 2006, Scientific American.

[54]  V. Dmitriev,et al.  Observation of Half-Quantum Vortices in Topological Superfluid ^{3}He. , 2015, Physical review letters.

[55]  A. Deb,et al.  Steerable optical tweezers for ultracold atom studies. , 2013, Optics letters.

[56]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[57]  Matthias Troyer,et al.  A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.

[58]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[59]  Roberto Santana,et al.  A Probabilistic Evolutionary Optimization Approach to Compute Quasiparticle Braids , 2014, SEAL.

[60]  H. Zhai,et al.  Searching for non-Abelian phases in the Bose-Einstein condensate of dysprosium , 2012, 1202.5775.

[61]  Louis H. Kauffman,et al.  Topological quantum computing and the Jones polynomial , 2006, SPIE Defense + Commercial Sensing.

[62]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[63]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[64]  Sahand Hormoz,et al.  Direct observation of Kelvin waves excited by quantized vortex reconnection , 2014, Proceedings of the National Academy of Sciences.

[65]  J W Alexander,et al.  A Lemma on Systems of Knotted Curves. , 1923, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[67]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[68]  Observation of vortex pinning in Bose-Einstein condensates. , 2006, Physical review letters.

[69]  M. Nakahara COMPUTING WITH QUANTA , 2012 .

[70]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[71]  M. Thistlethwaite An upper bound for the breadth of the Jones polynomial , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[72]  T. Simula Vortex mass in a superfluid , 2017, 1704.08410.

[73]  Discrete symmetries and 1/3-quantum vortices in condensates of F=2 cold atoms. , 2006, Physical review letters.

[74]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[75]  K. Honda,et al.  Spin-singlet Bose-Einstein condensation of two-electron atoms. , 2003, Physical review letters.

[76]  G. Volovik Fermion zero modes on vortices in chiral superconductors , 1999, cond-mat/9909426.

[77]  Weibo Feng Non-Abelian quantum error correction , 2015 .

[78]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[79]  Leon W. Cohen,et al.  Conference Board of the Mathematical Sciences , 1963 .

[80]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[81]  K. Helmerson,et al.  Optical vortex knots – one photon at a time , 2016, Scientific Reports.

[82]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[83]  J. A. Logan,et al.  Quantized Majorana conductance , 2017, Nature.

[84]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[85]  Resonantly-paired fermionic superfluids , 2006, cond-mat/0611022.

[86]  S. Simon,et al.  Topological quantum compiling , 2006, quant-ph/0610111.

[87]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[88]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[89]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[90]  N. Bonesteel,et al.  Systematically generated two-qubit anyon braids , 2015, 1511.00719.

[91]  G. Schoen,et al.  Quantum Manipulations of Small Josephson Junctions , 1997, cond-mat/9706016.

[92]  Parsa Bonderson,et al.  Probing non-Abelian statistics with quasiparticle interferometry. , 2006, Physical review letters.

[93]  T. Simula,et al.  Stable fractional vortices in the cyclic states of Bose-Einstein condensates , 2009, 0910.2775.

[94]  Masahito Ueda,et al.  Spinor Bose gases: Symmetries, magnetism, and quantum dynamics , 2013 .

[95]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[96]  Dorit Aharonov,et al.  A Polynomial Quantum Algorithm for Approximating the Jones Polynomial , 2008, Algorithmica.

[97]  Helmut G. Katzgraber,et al.  Genetic braid optimization: A heuristic approach to compute quasiparticle braids , 2012, ArXiv.

[98]  Carlos Mochon Anyons from nonsolvable finite groups are sufficient for universal quantum computation , 2003 .

[99]  Babatunde M. Ayeni,et al.  Simulation of braiding anyons using Matrix Product States , 2015, 1509.00903.

[100]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[101]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[102]  N. E. Bonesteel,et al.  Resources required for topological quantum factoring , 2010, 1002.0537.

[103]  Mark R. Dennis,et al.  Vortex knots in tangled quantum eigenfunctions , 2016, Nature Communications.

[104]  Xin Wan,et al.  Constructing functional braids for low-leakage topological quantum computing , 2008, 0802.4213.

[105]  R. Ainsworth,et al.  Topological qubit design and leakage , 2011, 1102.5029.

[106]  M. A. Martin-Delgado,et al.  Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement , 2007, 0712.0190.

[107]  G. Milburn,et al.  Relational time in anyonic systems , 2017, 1705.04130.

[108]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[109]  Ady Stern,et al.  Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.

[110]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[111]  Topological quantum computing with only one mobile quasiparticle. , 2005, Physical review letters.

[112]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[113]  Haitan Xu,et al.  Unified approach to topological quantum computation with anyons: From qubit encoding to Toffoli gate , 2010, 1001.4085.

[114]  E. Gibney Inside Microsoft’s quest for a topological quantum computer , 2016, Nature.

[115]  E. J. Yarmchuk,et al.  Observation of Stationary Vortex Arrays in Rotating Superfluid Helium , 1979 .

[116]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[117]  B Andrei Bernevig,et al.  Braiding non-Abelian quasiholes in fractional quantum Hall states. , 2014, Physical review letters.

[118]  Kareljan Schoutens,et al.  Wavefunctions for topological quantum registers , 2007 .

[119]  R. Feynman Simulating physics with computers , 1999 .

[120]  Giuseppe Mussardo,et al.  Topological quantum gate construction by iterative pseudogroup hashing , 2010, 1009.5808.

[121]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[122]  Carlo F. Barenghi,et al.  Introduction to quantum turbulence , 2014, Proceedings of the National Academy of Sciences.

[123]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[124]  Alexander L. Fetter Rotating trapped Bose-Einstein condensates , 2009 .

[125]  László Lovász,et al.  Approximate Counting and Quantum Computation , 2005, Combinatorics, Probability and Computing.

[126]  Jiannis K. Pachos,et al.  Focus on topological quantum computation , 2014, 1406.2887.

[127]  A. Abrikosov Nobel lecture: Type-II superconductors and the vortex lattice , 2004 .

[128]  A. Schirotzek,et al.  Vortices and superfluidity in a strongly interacting Fermi gas , 2005, Nature.

[129]  R. Grimm,et al.  Bose-Einstein condensation of erbium. , 2012, Physical review letters.

[130]  Mark R. Dennis,et al.  Isolated optical vortex knots , 2010 .