Models and algorithms for the Asymmetric Traveling Salesman Problem: an experimental comparison

This paper surveys the most effective mathematical models and exact algorithms proposed for finding the optimal solution of the well-known Asymmetric Traveling Salesman Problem (ATSP). The fundamental Integer Linear Programming (ILP) model proposed by Dantzig, Fulkerson and Johnson is first presented, its classical (assignment, shortest spanning r-arborescence, linear programming) relaxations are derived, and the most effective branch-and-bound and branch-and-cut algorithms are described. The polynomial ILP formulations proposed for the ATSP are then presented and analyzed. The considered algorithms and formulations are finally experimentally compared on a set of benchmark instances.

[1]  Gerald L. Thompson,et al.  Computational Performance of Three Subtour Elimination Algorithms for Solving Asymmetric Traveling Salesman Problems. , 1977 .

[2]  Stephen C. Graves,et al.  The Travelling Salesman Problem and Related Problems , 1978 .

[3]  A. Claus A new formulation for the travelling salesman problem , 1984 .

[4]  Matteo Fischetti,et al.  An Efficient Algorithm for the Min-Sum Arborescence Problem on Complete Digraphs , 1993, INFORMS J. Comput..

[5]  Matteo Fischetti,et al.  An additive bounding procedure for the asymmetric travelling salesman problem , 1992, Math. Program..

[6]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[7]  R. Jonker,et al.  Transforming asymmetric into symmetric traveling salesman problems , 1983 .

[8]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[9]  Matteo Fischetti,et al.  Solving Real-World ATSP Instances by Branch-and-Cut , 2001, Combinatorial Optimization.

[10]  Matteo Fischetti,et al.  A Polyhedral Approach to Simplified Crew Scheduling and Vehicle Scheduling Problems , 2001, Manag. Sci..

[11]  Matteo Fischetti,et al.  Exact Methods for the Asymmetric Traveling Salesman Problem , 2007 .

[12]  Stephen C. Graves,et al.  Technical Note - An n-Constraint Formulation of the (Time-Dependent) Traveling Salesman Problem , 1980, Oper. Res..

[13]  S. Voß,et al.  A classification of formulations for the (time-dependent) traveling salesman problem , 1995 .

[14]  J. Pekny,et al.  Results from a parallel branch and bound algorithm for the asymmetric traveling salesman problem , 1989 .

[15]  Matteo Fischetti,et al.  A Polyhedral Approach to the Asymmetric Traveling Salesman Problem , 1997 .

[16]  Matteo Fischetti,et al.  Facets of the Asymmetric Traveling Salesman Polytope , 1991, Math. Oper. Res..

[17]  P. Toth,et al.  Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem , 1980 .

[18]  Paolo Toth,et al.  Primal-dual algrorithms for the assignment problem , 1987, Discret. Appl. Math..

[19]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[20]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[21]  Egon Balas,et al.  A lifting procedure for the asymmetric traveling salesman polytope and a large new class of facets , 1993, Math. Program..

[22]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..

[23]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[24]  Luís Gouveia,et al.  Natural and extended formulations for the Time-Dependent Traveling Salesman Problem , 2014, Discret. Appl. Math..

[25]  Luís Gouveia,et al.  On extended formulations for the precedence constrained asymmetric traveling salesman problem , 2006, Networks.

[26]  Egon Balas,et al.  A restricted Lagrangean approach to the traveling salesman problem , 1981, Math. Program..

[27]  Joseph F. Pekny,et al.  A parallel branch and bound algorithm for solving large asymmetric traveling salesman problems , 1992, CSC '90.

[28]  Hanif D. Sherali,et al.  New tighter polynomial length formulations for the asymmetric traveling salesman problem with and without precedence constraints , 2005, Oper. Res. Lett..

[29]  Egon Balas The Asymmetric Assignment Problem and Some New Facets of the Traveling Salesman Polytope on a Directed Graph , 1989, SIAM J. Discret. Math..

[30]  Giovanni Rinaldi,et al.  Facet identification for the symmetric traveling salesman polytope , 1990, Math. Program..

[31]  Joseph F. Pekny,et al.  A note on exploiting the Hamiltonian cycle problem substructure of the Asymmetric Traveling Salesman Problem , 1991, Oper. Res. Lett..

[32]  Giovanni Rinaldi,et al.  An efficient algorithm for the minimum capacity cut problem , 1990, Math. Program..

[33]  Paolo Toth,et al.  Exact solution of large-scale, asymmetric traveling salesman problems , 1995, TOMS.

[34]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[35]  Matteo Fischetti,et al.  An Additive Bounding Procedure for Combinatorial Optimization Problems , 1989, Oper. Res..

[36]  Luís Gouveia,et al.  The asymmetric travelling salesman problem and a reformulation of the Miller-Tucker-Zemlin constraints , 1999, Eur. J. Oper. Res..

[37]  Hanif D. Sherali,et al.  A class of lifted path and flow-based formulations for the asymmetric traveling salesman problem with and without precedence constraints , 2006, Discret. Optim..

[38]  Ting-Yi Sung,et al.  An analytical comparison of different formulations of the travelling salesman problem , 1991, Math. Program..

[39]  Robert E. Tarjan,et al.  Finding optimum branchings , 1977, Networks.

[40]  Luís Gouveia,et al.  The asymmetric travelling salesman problem: on generalizations of disaggregated Miller-Tucker-Zemlin constraints , 2001, Discret. Appl. Math..

[41]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[42]  William J. Cook,et al.  Implementing the Dantzig-Fulkerson-Johnson algorithm for large traveling salesman problems , 2003, Math. Program..

[43]  Mandell Bellmore,et al.  Pathology of Traveling-Salesman Subtour-Elimination Algorithms , 1971, Oper. Res..

[44]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[45]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[46]  Gilbert Laporte,et al.  Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints , 1991, Oper. Res. Lett..

[47]  Robert S. Garfinkel,et al.  Technical Note - On Partitioning the Feasible Set in a Branch-and-Bound Algorithm for the Asymmetric Traveling-Salesman Problem , 1973, Oper. Res..

[48]  Hanif D. Sherali,et al.  On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems , 2002, Oper. Res..

[49]  André Langevin,et al.  CLASSIFICATION OF TRAVELING SALESMAN PROBLEM FORMULATIONS , 1988 .

[50]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[51]  L. Gouveia A result on projection for the vehicle routing ptoblem , 1995 .

[52]  Stephen P. Boyd,et al.  Branch and Bound Methods , 1987 .

[53]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.

[54]  William J. Cook,et al.  Solution of a Large-Scale Traveling-Salesman Problem , 1954, 50 Years of Integer Programming.

[55]  Andrea Lodi,et al.  Combinatorial Traveling Salesman Problem Algorithms , 2011 .

[56]  Temel Öncan,et al.  A comparative analysis of several asymmetric traveling salesman problem formulations , 2009, Comput. Oper. Res..