심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석
暂无分享,去创建一个
도시화로 인한 도시열섬현상(Urban Heat Island)이 심화되면서 도시차원의 열 관리가 중요한 이슈로 다뤄지고, 도시열섬현완화 방안으로 녹지사업과 환경정책이 시행되고 있고, 도시공원 및 녹지와 열의 관계를 분석하는 다수의 연구가 수행되었다. 하지만 열이라는 특성은 다수의 요인이 복합적으로 얽혀있어 선형적 상관관계를 통한 해석에 한계가 있다. 본 연구는 변수요인들이 다양하고 데이터의 양이 방대하여 기존의 통계분석방식으로는 분석하기 어려운 분야에서 강점을 갖는 심층신경망 모형 방법론을 사용하여 여름철 서울지역의 공원 및 녹지의 열섬저감효과를 평가하는 것을 목표로 연구를 진행하였다. 이를 위해서 Landsat 8 인공위성영상을 활용하여 동시간의 광역적인 데이터를 취득하였고, ArcGis 10.7을 이용하여 서울시를 30m×30m 그리드로 격자화하여, 각 격자에 열섬저감을 측정할 수 있는 환경변수를 구축하였다. Python 3.7과 Keras를 이용하여 심층신경망 모형을 생성하여 지표면 온도와 변수 간의 관계를 분석하였다. 분석 결과, 인공신경망 모형은 높은 설명력을 가지는 것을 확인하였다. 또한 일반적인 연구 결과와 마찬가지로 인접 녹지와의 거리가 가까울수록, 공원면적이 커질수록, 공원의 식생활력도가 높을수록 지표면 온도가 낮아짐을 확인하였다. 식생활력도에 의한 냉각효과가 많이 있는 것을 확인하였고, 일부 선행연구에서 녹지에 인접할수록 0.3℃ ~ 2.3℃ 저감될 수 있는 특성이 나타나고, 공원의 크기가 크면 2℃~3℃ 저감효과가 나타난다는 결과를 보이고 있는데, 본 연구결과와 비교해 보면 도출된 효과가 과대평가되었을 가능성을 확인하였다. 본 연구의 결과는 향후 도시열섬현상 완화를 위해 새로운 도시녹지를 조성시 효과적인 녹지 구성을 위한 정보로 활용될 수 있다.