A deconvolution approach to estimation of a common shape in a shifted curves model
暂无分享,去创建一个
[1] Theofanis Sapatinas,et al. Functional deconvolution in a periodic setting: Uniform case , 2007 .
[2] Fabrice Gamboa,et al. Semi-parametric estimation of shifts , 2007, 0712.1936.
[3] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[4] D. Donoho. Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .
[5] T. Gasser,et al. Self‐modelling warping functions , 2004 .
[6] Michael H. Neumann,et al. On the effect of estimating the error density in nonparametric deconvolution , 1997 .
[7] A. Tsybakov,et al. Wavelets, approximation, and statistical applications , 1998 .
[8] Myriam Vimond,et al. Efficient estimation for a subclass of shape invariant models , 2010, 1010.0796.
[9] Jean-Michel Loubes,et al. Estimation of the distribution of random shifts deformation , 2008, 0812.3253.
[10] J. Ramsay,et al. Curve registration , 2018, Oxford Handbooks Online.
[11] E. Kolaczyk. Wavelet Methods For The Inversion Of Certain Homogeneous Linear Operators In The Presence Of Noisy D , 1994 .
[12] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[13] T. Gasser,et al. Convergence and consistency results for self-modeling nonlinear regression , 1988 .
[14] Alain Trouvé,et al. Bayesian template estimation in computational anatomy , 2008, NeuroImage.
[15] K. Mardia,et al. A penalized likelihood approach to image warping , 2001 .
[16] Fabrice Gamboa,et al. Estimation of Translation, Rotation, and Scaling between Noisy Images Using the Fourier--Mellin Transform , 2009, SIAM J. Imaging Sci..
[17] R. Bhattacharya,et al. Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.
[18] Marc Hoffmann,et al. Nonlinear estimation for linear inverse problems with error in the operator , 2008, 0803.1956.
[19] Michael Stewart,et al. The WaveD Transform in R: Performs Fast Translation-Invariant Wavelet Deconvolution , 2007 .
[20] Vladimir Koltchinskii,et al. On inverse problems with unknown operators , 2001, IEEE Trans. Inf. Theory.
[21] Marc Raimondo,et al. Wavelet Deconvolution With Noisy Eigenvalues , 2007, IEEE Transactions on Signal Processing.
[22] Henry W. Altland,et al. Applied Functional Data Analysis , 2003, Technometrics.
[23] A. Tsybakov,et al. Minimax theory of image reconstruction , 1993 .
[24] S. Mallat. A wavelet tour of signal processing , 1998 .
[25] Y. Meyer. Wavelets and Operators , 1993 .
[26] T. Willer. Deconvolution in white noise with a random blurring function , 2005, math/0505142.
[27] Yaacov Ritov,et al. Semiparametric Curve Alignment and Shift Density Estimation for Biological Data , 2008, IEEE Transactions on Signal Processing.
[28] H. Müller,et al. Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .
[29] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[30] B. Vidakovic,et al. Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .
[31] T. Gasser,et al. Alignment of curves by dynamic time warping , 1997 .
[32] Ulf Grenander,et al. General Pattern Theory: A Mathematical Study of Regular Structures , 1993 .
[33] H. Rosenthal. On the Span in Lp of Sequences of Independent Random Variables (II) , 1972 .
[34] Gerard Kerkyacharian,et al. Wavelet deconvolution in a periodic setting , 2004 .
[35] B. Silverman,et al. Functional Data Analysis , 1997 .
[36] Y. Amit,et al. Towards a coherent statistical framework for dense deformable template estimation , 2007 .
[37] W. W. Daniel. Applied Nonparametric Statistics , 1979 .
[38] T. Gasser,et al. Searching for Structure in Curve Samples , 1995 .
[39] Jean-Michel Loubes,et al. Statistical M-Estimation and Consistency in Large Deformable Models for Image Warping , 2009, Journal of Mathematical Imaging and Vision.
[40] Thomas Trigano,et al. Semiparametric density estimation of shifts between curves , 2008 .
[41] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[42] I. Ibragimov,et al. Norms of Gaussian sample functions , 1976 .
[43] Jérémie Bigot. Landmark-Based Registration of Curves via the Continuous Wavelet Transform , 2006 .
[44] Birgitte B. Rønn,et al. Nonparametric maximum likelihood estimation for shifted curves , 2001 .
[45] T. Gasser,et al. Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .
[46] A. Tsybakov,et al. Oracle inequalities for inverse problems , 2002 .