Branching degrees above low degrees

In this paper, we investigate the location of the branching degrees within the recursively enumerable (r.e.) degrees. We show that there is a branching degree below any given nonzero r.e. degree and, using a new branching degree construction and a technique of Robinson, that there is a branching degree above any given low r.e. degree. Our results extend work of Shoenfield and Soare and Lachlan on the generalized nondiamond question and show that the branching degrees form an automorphism base for the r.e. degrees.