Commensurability and chaos in magnetic vortex oscillations

Magnetic vortex dynamics in thin films is characterized by gyrotropic motion, the sense of gyration depending on the vortex core polarity, which reverses when a critical velocity is reached. Although self-sustained vortex oscillations in nanoscale systems are known to be possible, the precise role of core reversal in such dynamics remains unknown. Here we report on an experimental observation of periodic core reversal during self-sustained vortex gyration in a magnetic nanocontact system. By tuning the ratio between the gyration frequency and the rate of core reversal, we show that commensurate phase-locked and incommensurate chaotic states are possible, resulting in Devil’s staircases with driving currents. These systems could have the potential to serve as tunable nanoscale radiofrequency electrical oscillators for secure communications, allowing schemes such as encryption by chaos on demand.

[1]  K. Guslienko,et al.  Dynamic origin of vortex core switching in soft magnetic nanodots. , 2007, Physical review letters.

[2]  A. Vansteenkiste,et al.  MuMax: A new high-performance micromagnetic simulation tool , 2011, 1102.3069.

[3]  Teruo Ono,et al.  Electrical switching of the vortex core in a magnetic disk. , 2007, Nature materials.

[4]  T. Devolder,et al.  Vortex nucleation in spin-torque nanocontact oscillators , 2010 .

[5]  Zbigniew Celinski,et al.  Injection locking of the gyrotropic vortex motion in a nanopillar , 2010 .

[6]  Y. Gaididei,et al.  Off-centred immobile magnetic vortex under influence of spin-transfer torque , 2010, 1010.5446.

[7]  L. Berger,et al.  Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films , 1984 .

[8]  V. Cros,et al.  Phase locking of vortex based spin transfer oscillators to a microwave current , 2010, 1009.4076.

[9]  P. Crozat,et al.  Frequency shift keying in vortex-based spin torque oscillators , 2010, 1010.4464.

[10]  T. Tyliszczak,et al.  X-ray imaging of the dynamic magnetic vortex core deformation , 2008, 0811.1348.

[11]  Paul Crozat,et al.  Time-resolved zero field vortex oscillations in point contacts , 2009 .

[12]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[13]  Y. Gaididei,et al.  Current induced switching of vortex polarity in magnetic nanodisks , 2007 .

[14]  V. Novosad,et al.  Soliton-pair dynamics in patterned ferromagnetic ellipses , 2005, cond-mat/0602509.

[15]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[16]  I. N. Krivorotov,et al.  Magnetic vortex oscillator driven by d.c. spin-polarized current , 2007, cond-mat/0702253.

[17]  G. Schmidt,et al.  Optimal control of vortex-core polarity by resonant microwave pulses , 2011, 1107.5700.

[18]  S. E. Russek,et al.  Low-field current-hysteretic oscillations in spin-transfer nanocontacts , 2007 .

[19]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[20]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[21]  A. Fert,et al.  Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions. , 2010, Nature communications.

[22]  P. Crowell,et al.  Dynamics of a pinned magnetic vortex. , 2006, Physical review letters.

[23]  Sam Palmer,et al.  Magnetic domains , 2012, Journal of High Energy Physics.

[24]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[25]  V. Cros,et al.  Phase-locking of magnetic vortices mediated by antivortices. , 2009, Nature nanotechnology.

[26]  R. Hertel,et al.  Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. , 2006, Physical review letters.

[27]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[28]  M. Manfrini,et al.  Electrical properties of magnetic nanocontact devices computed using finite-element simulations , 2012 .

[29]  A. Scholl,et al.  Vortex Core-Driven Magnetization Dynamics , 2004, Science.

[30]  P Crozat,et al.  Current-driven vortex oscillations in metallic nanocontacts. , 2007, Physical review letters.

[31]  Per Bak,et al.  Commensurate phases, incommensurate phases and the devil's staircase , 1982 .

[32]  K. Buchanan,et al.  Magnetic vortex resonance in patterned ferromagnetic dots , 2005 .

[33]  G. Schmidt,et al.  Bistability of vortex core dynamics in a single perpendicularly magnetized nanodisk. , 2008, Physical review letters.

[34]  Bishop,et al.  Vortices in the classical two-dimensional anisotropic Heisenberg model. , 1989, Physical review. B, Condensed matter.

[35]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[36]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[37]  C. Back,et al.  Magnetic vortex core reversal by excitation of spin waves , 2010, Nature communications.

[38]  P. Crozat,et al.  Agility of vortex-based nanocontact spin torque oscillators , 2009, 0910.1941.

[39]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[40]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .