Exploring Mars at the nanoscale: Applications of transmission electron microscopy and atom probe tomography in planetary exploration

The upcoming Mars Sample Return (MSR) mission aims to deliver small quantities of Martian rocks to the Earth. Investigating these precious samples requires the development and application of techniques that can extract the greatest amount of high quality data from the minimum sample volume, thereby maximising science return from MSR. Atom probe tomography (APT) and transmission electron microscopy (TEM) are two complementary techniques that can obtain nanoscale structural, geochemical and, in the case of atom probe, isotopic information from small sample volumes. Here we describe how both techniques operate, as well as review recent developments in sample preparation protocols. We also outline how APT has been successfully applied to extraterrestrial materials in the recent past. Finally, we describe how we have studied Martian meteorites using TEM and APT in close coordination in order to characterise the products of water/rock interactions in t h e cru st of Ma r s – a k ey sc ie n ce goal of MSR. Our results provide new insights into the Martian hydrosphere and the mechanisms of anhydrous-hydrous mineral replacement. In light of the unique results provided by these tools, APT and TEM should form a crucial part at the culmination of a correlative analytical pipeline for MSR mission materials.

[1]  S. Reddy,et al.  Novel Applications of FIB-SEM-Based ToF-SIMS in Atom Probe Tomography Workflows , 2020, Microscopy and Microanalysis.

[2]  A. Monterrosa,et al.  Solar Wind Hydration of Itokawa Olivine , 2019 .

[3]  P. Bagot,et al.  An in-situ approach for preparing atom probe tomography specimens by xenon plasma-focussed ion beam. , 2019, Ultramicroscopy.

[4]  P. Bagot,et al.  Insights into Martian Fluid-Rock Reactions by Atom Probe Tomogrpahy of the Interface Between Nakhlite Olivine and Iddingsite , 2019 .

[5]  S. Reddy,et al.  Nanoscale constraints on the shock-induced transformation of zircon to reidite , 2019, Chemical Geology.

[6]  P. Rettberg,et al.  The potential science and engineering value of samples delivered to Earth by Mars sample return , 2019, Meteoritics & Planetary Science.

[7]  J. Darling,et al.  Crystallization and impact history of a meteoritic sample of early lunar crust (NWA 3163) refined by atom probe geochronology , 2019, Geoscience Frontiers.

[8]  P. Midgley,et al.  Nanomagnetic properties of the meteorite cloudy zone , 2018, Proceedings of the National Academy of Sciences.

[9]  J. Cairney,et al.  High-Pressure Excursions in the Matrix of Martian Meteorite North West Africa (NWA) 11522 , 2018 .

[10]  A. Boyce,et al.  Aqueous alteration of the Martian meteorite Northwest Africa 817: Probing fluid–rock interaction at the nakhlite launch site , 2018, Meteoritics & Planetary Science.

[11]  S. Ringer,et al.  Defining the Potential of Nanoscale Re‐Os Isotope Systematics Using Atom Probe Microscopy , 2018, Geostandards and Geoanalytical Research.

[12]  Luther W. Beegle,et al.  The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life , 2018 .

[13]  K. A. Dyl,et al.  Crystallography of refractory metal nuggets in carbonaceous chondrites: a transmission Kikuchi diffraction approach , 2017 .

[14]  Martin R. Lee,et al.  Taking the pulse of Mars via dating of a plume-fed volcano , 2017, Nature Communications.

[15]  P. Bland,et al.  Nebula sulfidation and evidence for migration of "free-floating" refractory metal nuggets revealed by atom probe microscopy , 2017 .

[16]  T. Prosa,et al.  Ultra‐reduced phases in Apollo 16 regolith: Combined field emission electron probe microanalysis and atom probe tomography of submicron Fe‐Si grains in Apollo 16 sample 61500 , 2017 .

[17]  B. Cohen Taking the Pulse of Mars via 40Ar/39Ar Dating of a Plume-Fed Volcano , 2017 .

[18]  D Lawrence,et al.  Atomic-scale age resolution of planetary events , 2017, Nature Communications.

[19]  W. M. Rainforth,et al.  Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel , 2017, Science.

[20]  S. Reddy,et al.  Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy , 2016 .

[21]  S. Micklethwaite,et al.  Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy , 2016 .

[22]  Richard Armstrong,et al.  Deformation-induced trace element redistribution in zircon revealed using atom probe tomography , 2016, Nature Communications.

[23]  T. Prosa,et al.  Atom probe tomography (APT) of carbonate minerals. , 2016, Micron.

[24]  Harry Y. McSween,et al.  Petrology on Mars , 2015 .

[25]  C. Floss,et al.  Atom-Probe Tomography Measurements of Isotopic Ratios of High-field Materials with Corrections and Standardization: a Case Study of the 12C/13C of Meteoritic Nanodiamonds , 2015, Microscopy and Microanalysis.

[26]  I. MacLaren,et al.  Opal‐A in the Nakhla meteorite: A tracer of ephemeral liquid water in the Amazonian crust of Mars , 2015 .

[27]  B. Gorman,et al.  Atom probe tomography of isoferroplatinum , 2015 .

[28]  Martin R. Lee,et al.  Formation of iddingsite veins in the martian crust by centripetal replacement of olivine: Evidence from the nakhlite meteorite Lafayette , 2015 .

[29]  A. Seyeux,et al.  Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion. , 2015, Nature materials.

[30]  M. Thuvander,et al.  Direct observation of hydrogen and deuterium in oxide grain boundaries in corroded Zirconium alloys , 2015 .

[31]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[32]  A. Davis,et al.  Atom‐probe analyses of nanodiamonds from Allende , 2014 .

[33]  Charles S. Cockell,et al.  Impact-generated hydrothermal systems on Earth and Mars , 2013 .

[34]  A. Steele,et al.  Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034 , 2013, Science.

[35]  T. Tomkinson,et al.  Evidence for silicate dissolution on Mars from the Nakhla meteorite , 2013 .

[36]  David J. Larson,et al.  Local Electrode Atom Probe Tomography: A User's Guide , 2013 .

[37]  G. J. Taylor,et al.  Hydrogen isotope analyses of alteration phases in the nakhlite martian meteorites , 2012 .

[38]  David J. Larson,et al.  Atom Probe Tomography 2012 , 2012 .

[39]  Baptiste Gault,et al.  Atom Probe Microscopy , 2012 .

[40]  Olena KALOKHTINA,et al.  Atom Probe Tomography , 2012 .

[41]  K. Stiller,et al.  Quantitative atom probe analysis of carbides. , 2011, Ultramicroscopy.

[42]  T. Kelly Kinetic-Energy Discrimination for Atom Probe Tomography , 2011, Microscopy and Microanalysis.

[43]  M. Lee Transmission electron microscopy (TEM) of Earth and planetary materials: A review , 2010, Mineralogical Magazine.

[44]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[45]  Bernd Grambow,et al.  Nuclear Waste Glasses - How Durable? , 2006 .

[46]  M. Drake,et al.  A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars , 2005 .

[47]  A. Treiman The nakhlite meteorites: Augite-rich igneous rocks from Mars , 2005 .

[48]  P. Bland,et al.  Preparation of TEM samples by focused ion beam (FIB) techniques: applications to the study of clays and phyllosilicates in meteorites , 2003, Mineralogical Magazine.

[49]  O. Eugster,et al.  Ages and Geologic Histories of Martian Meteorites , 2001 .

[50]  K. A. Smith,et al.  Absolute detection efficiency of a microchannel plate detector for kilo-electron volt energy ions , 1999 .

[51]  P. Buseck,et al.  Ratios of ferrous to ferric iron from nanometre-sized areas in minerals , 1998, Nature.

[52]  H. McSween,et al.  Petrogenesis of the nakhlite meteorites - Evidence from cumulate mineral zoning , 1992 .

[53]  D. Kingham The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states , 1982 .

[54]  T. Bunch,et al.  THE NAKHLITES PART I: PETROGRAPHY AND MINERAL CHEMISTRY , 1975 .

[55]  J. R. Ashworth,et al.  Water in non-carbonaceous stony meteorites , 1975, Nature.