The strange duality conjecture for generic curves

Let SUX(r) be the moduli space of semi-stable vector bundles of rank r with trivial determinant over a connected smooth projective algebraic curve X of genus g ≥ 1 over C. Recall that a vector bundle E on X is called semi-stable if for any subbundle V , deg(V )/ rk(V ) ≤ deg(E)/ rk(E). Points of SUX(r) correspond to isomorphism classes of semi-stable rank r vector bundles with trivial determinant up to an equivalence relation. For any line bundle L of degree g−1 onX define ΘL = {E ∈ SUX(r), h(E⊗L) ≥ 1}. This turns out be a non-zero Cartier divisor whose associated line bundle L = O(ΘL) does not depend upon L. It is known that L generates the Picard group of SUX(r) (for this and the precise definition of L in terms of determinant of cohomology see [DN]). Let U∗ X(k) be the moduli space of semi-stable rank k and degree k(g−1) bundles on X. Recall that on U∗ X(k) there is a canonical non-zero theta (Cartier) divisor Θk whose underlying set is {F ∈ U∗ X(k), h(X,F ) = 0}. Put M = O(Θk). Consider the natural map τk,r : SUX(r)× U∗ X(k) → U∗ X(kr) given by tensor product. From the theorem of the square, it follows that τ∗ k,rM is isomorphic to L M. The canonical element Θkr ∈ H0(U∗ X(kr),M) and the Kunneth theorem give a map well defined up to scalars:

[1]  E. Previato,et al.  Prym varieties and the Verlinde formula , 1992 .

[2]  F. Knudsen,et al.  Projectivity of the moduli space of stable curves , 1976 .

[3]  E. Witten The Verlinde algebra and the cohomology of the Grassmannian , 1993, hep-th/9312104.

[4]  A. Beauville Vector Bundles on Riemann Surfaces and Conformal Field Theory , 1996 .

[5]  A. Beauville Fibrés de rang deux sur une courbe, fibré déterminant et fonctions thêta, II , 1988 .

[6]  Christian Pauly Espaces de modules de fibrés paraboliques et blocs conformes , 1996 .

[7]  D. Gorenstein,et al.  Algebraic approximation of structures over complete local rings , 1969 .

[8]  A. Beauville,et al.  Conformal blocks and generalized theta functions , 1993, alg-geom/9309003.

[9]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[10]  D. Gepner Fusion rings and geometry , 1991 .

[11]  Schubert Calculus,et al.  Quantum Schubert Calculus , 1994 .

[12]  Separation properties of theta functions , 1997, alg-geom/9709008.

[13]  J. Kollár,et al.  Algebraic Geometry Santa Cruz 1995 , 1997 .

[14]  Steven L. Kleiman,et al.  The transversality of a general translate , 1974 .

[15]  D. Mumford,et al.  The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". , 1976 .

[16]  J. L. Potier Lectures on Vector Bundles , 1997 .

[17]  F. Knudsen The projectivity of the moduli space of stable curves, II: The stacks $M_{g,n}$ , 1983 .

[18]  L. Illusie Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 , 1977 .

[19]  D. Zagier,et al.  Infinite Grassmannians and Moduli Spaces of G–bundles , 1994 .

[20]  M. Narasimhan,et al.  Spectral curves and the generalised theta divisor. , 1989 .

[21]  A. Polishchuk Abelian Varieties, Theta Functions and the Fourier Transform , 2003 .

[22]  P. Belkale Quantum generalization of the Horn conjecture , 2003, math/0303013.

[23]  Mark Feshbach,et al.  Topology and physics , 1989 .

[24]  R. Pandharipande,et al.  Notes on stable maps and quantum cohomology , 1996, alg-geom/9608011.

[25]  A. Beauville Vector bundles on curves and generalized theta functions: recent results and open problems , 1994, alg-geom/9404001.

[26]  P. Belkale Invariant theory of GL(n) and intersection theory of Grassmannians , 2004 .

[27]  J. Drézet,et al.  Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques , 1989 .

[28]  Yves Laszlo A propos de l'espace des modules de fibrés de rang 2 sur une courbe , 1994 .

[29]  K. Ueno,et al.  Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries , 1989 .

[30]  Mihnea Popa,et al.  Verlinde bundles and generalized theta linear series , 2000, math/0002017.

[31]  P. Newstead LECTURES ON VECTOR BUNDLES (Cambridge Studies in Advanced Mathematics 54) , 1999 .

[32]  T. Abe On $SL(2)-GL(n)$ strange duality , 2006 .