Adversarial Hypothesis Testing and a Quantum Stein’s Lemma for Restricted Measurements

Recall the classical hypothesis testing setting with two sets of probability distributions <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula>. One receives either <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> i.i.d. samples from a distribution <inline-formula> <tex-math notation="LaTeX">$p \in P$ </tex-math></inline-formula> or from a distribution <inline-formula> <tex-math notation="LaTeX">$q \in Q$ </tex-math></inline-formula> and wants to decide from which set the points were sampled. It is known that the optimal exponential rate at which errors decrease can be achieved by a simple maximum-likelihood ratio test which does not depend on <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>, but only on the sets <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula>. We consider an adaptive generalization of this model where the choice of <inline-formula> <tex-math notation="LaTeX">$p \in P$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$q \in Q$ </tex-math></inline-formula> can change in each sample in some way that depends arbitrarily on the previous samples. In other words, in the <inline-formula> <tex-math notation="LaTeX">$k^{th}$ </tex-math></inline-formula> round, an adversary, having observed all the previous samples in rounds <inline-formula> <tex-math notation="LaTeX">$1,\ldots,k-1$ </tex-math></inline-formula>, chooses <inline-formula> <tex-math notation="LaTeX">$p_{k} \in P$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$q_{k} \in Q$ </tex-math></inline-formula>, with the goal of confusing the hypothesis test. We prove that even in this case, the optimal exponential error rate can be achieved by a simple maximum-likelihood test that depends only on <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula>. We then show that the adversarial model has applications in hypothesis testing for <italic>quantum states</italic> using restricted measurements. For example, it can be used to study the problem of distinguishing entangled states from the set of all separable states using only measurements that can be implemented with local operations and classical communication (LOCC). The basic idea is that in our setup, the deleterious effects of entanglement can be simulated by an adaptive classical adversary. We prove a quantum Stein’s Lemma in this setting: In many circumstances, the optimal hypothesis testing rate is equal to an appropriate notion of quantum relative entropy between two states. In particular, our arguments yield an alternate proof of Li and Winter’s recent strengthening of strong subadditivity for von Neumann entropy.

[1]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[2]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[3]  Salman Beigi,et al.  Approximating the set of separable states using the positive partial transpose test , 2009, 0902.1806.

[4]  D. Petz Monotonicity of quantum relative entropy revisited , 2002, quant-ph/0209053.

[5]  A. Lichnerowicz Proof of the Strong Subadditivity of Quantum-Mechanical Entropy , 2018 .

[6]  林 正人 Quantum information : an introduction , 2006 .

[7]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[8]  A. Winter,et al.  Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.

[9]  Aram Wettroth Harrow,et al.  Quantum de Finetti Theorems Under Local Measurements with Applications , 2012, Communications in Mathematical Physics.

[10]  Szilárd Gy. Révész,et al.  Potential Theoretic Approach to Rendezvous Numbers , 2005, math/0503423.

[11]  Matthias Christandl,et al.  A quasipolynomial-time algorithm for the quantum separability problem , 2010, STOC '11.

[12]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[13]  Igor Bjelakovic,et al.  Quantum Stein's lemma revisited, inequalities for quantum entropies, and a concavity theorem of Lieb , 2003, quant-ph/0307170.

[14]  M. Donald On the relative entropy , 1986 .

[15]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[16]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[17]  M. Sion On general minimax theorems , 1958 .

[18]  Ashley Montanaro,et al.  An Efficient Test for Product States with Applications to Quantum Merlin-Arthur Games , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[19]  N. Merhav,et al.  A competitive Neyman-Pearson approach to universal hypothesis testing with applications , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[20]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[21]  M. Nussbaum,et al.  THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.

[22]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[23]  Graeme Smith,et al.  Quantum channel capacities , 2010, 2010 IEEE Information Theory Workshop.

[24]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[25]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  Paul Milgrom,et al.  Putting Auction Theory to Work , 2004 .

[28]  A. Winter,et al.  Robustness of Quantum Markov Chains , 2006, quant-ph/0611057.

[29]  Fu Fangwei,et al.  Hypothesis testing for arbitrarily varying source , 1996 .

[30]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[31]  J. Deuschel,et al.  A Quantum Version of Sanov's Theorem , 2004, quant-ph/0412157.

[32]  Masahito Hayashi,et al.  Discrimination of Two Channels by Adaptive Methods and Its Application to Quantum System , 2008, IEEE Transactions on Information Theory.

[33]  Omar Fawzi,et al.  Efficient optimization of the quantum relative entropy , 2017, 1705.06671.

[34]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[35]  Ke Li,et al.  Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.

[36]  Jonathan Oppenheim,et al.  Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.

[37]  R. Werner,et al.  Quantum Statistical Mechanics of General Mean Field Systems , 1989 .

[38]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[39]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[40]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[41]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[42]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[43]  David Sutter,et al.  Approximate quantum Markov chains , 2018, ArXiv.

[44]  F. Brandão,et al.  A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.

[45]  Mario Berta,et al.  On variational expressions for quantum relative entropies , 2015, ArXiv.

[46]  Masahito Hayashi,et al.  Tight asymptotic bounds on local hypothesis testing between a pure bipartite state and the white noise state , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[47]  Gerardo Adesso,et al.  Gaussian quantum resource theories , 2018, Physical Review A.

[48]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[49]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[50]  M. Piani Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.

[51]  Andreas Winter,et al.  Relative Entropy and Squashed Entanglement , 2012, 1210.3181.

[52]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[53]  Edward C. Posner,et al.  Random coding strategies for minimum entropy , 1975, IEEE Trans. Inf. Theory.

[54]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[55]  David Pérez-García,et al.  Are problems in Quantum Information Theory (un)decidable? , 2011, ArXiv.

[56]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[57]  W. Hoeffding Asymptotically Optimal Tests for Multinomial Distributions , 1965 .

[58]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .