A New Domain Decomposition Parallel Algorithm for Convection–Diffusion Problem

AbstractBasing on overlapping domain decomposition, we construct a new parallel algorithm combined the method of subspace correction with least-squares procedure for solving time-dependent convection–diffusion problem. This algorithm is fully parallel. We analyze the convergence of approximate solution, and study the dependence of the convergent rate on the spacial mesh size, time increment, iteration number and sub-domains overlapping degree. Both theoretical analysis and numerical results suggest that only one or two iterations are needed to reach to given accuracy at each time step.

[1]  Jinchao Xu The method of subspace corrections , 2001 .

[2]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[3]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[4]  Clint Dawson,et al.  Explicit-/implicit conservative Galerkin domain decomposition procedures for parabolic problems , 1992 .

[5]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[6]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[7]  Danping Yang,et al.  Parallel characteristic finite difference method for convection–diffusion equations , 2011 .

[8]  Danping Yang,et al.  Parallel characteristic finite element method for time-dependent convection-diffusion problem , 2011, Numer. Linear Algebra Appl..

[9]  Danping Yang,et al.  Parallel domain decomposition procedures of improved D-D type for parabolic problems , 2010, J. Comput. Appl. Math..

[10]  G. Burton Sobolev Spaces , 2013 .

[11]  Olof B. Widlund,et al.  Some Domain Decomposition Algorithms for Nonselfadjoint Elliptic and Parabolic Partial Differential Equations , 2015 .

[12]  Xiao-Chuan Cai,et al.  Additive Schwarz algorithms for parabolic convection-diffusion equations , 1991 .

[13]  Dan-ping Yang,et al.  Some least-squares Galerkin procedures for first-order time-dependent convection–diffusion system , 1999 .

[14]  Petr N. Vabishchevich,et al.  A Substructuring Domain Decomposition Scheme for Unsteady Problems , 2011, Comput. Methods Appl. Math..

[15]  Danping Yang A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media , 2001 .

[16]  Xuemin Tu,et al.  A domain decomposition discretization of parabolic problems , 2007, Numerische Mathematik.

[17]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[18]  Hongxing Rui Multiplicative Schwarz methods for parabolic problems , 2003, Appl. Math. Comput..

[19]  Xiao-Chuan Cai,et al.  Multiplicative Schwarz Methods for Parabolic Problems , 1994, SIAM J. Sci. Comput..

[20]  Xue-Cheng Tai,et al.  A Space Decomposition Method for Parabolic Equations , 1998 .

[21]  Danping Yang,et al.  Parallel Galerkin domain decomposition procedures for parabolic equation on general domain , 2009 .

[22]  羊丹平,et al.  SCHWARZ TYPE DOMAIN DECOMPOSITION ALGORITHMS FOR PARABOLIC EQUATIONS AND ERROR ESTIMATES , 1998 .

[23]  Rui Hongxing,et al.  Schwarz type domain decomposition algorithms for parabolic equations and error estimates , 1998 .

[24]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[25]  Roland Glowinski,et al.  A domain decomposition and mixed method for a linear parabolic boundary value problem , 2004 .