Studies on the substrate-induced spectral change of cytochrome P-450 in liver microsomes.

The spectral changes of cytochrome P-450 caused by the addition of small molecules to liver microsomes were investigated precisely and the following conclusions were reached. 1. The Type I spectral change was entirely due to the interaction of the cytochrome with a hydrocarbon residue in a ligand. To induce the modified Type II spectral change, the presence of a hydroxyl group in a ligand was required. Compounds which contain a basic amino group induced the Type II spectral change. 2. The Type I spectral change was caused by the interaction of a ligand with the 419-nm form of cytochrome P-450, with its concomitant conversion to the 394-nm form. Whereas, compounds inducing modified Type II spectral change interacted with the 394nm form of the cytochrome. In this case, however, the 394-nm form was not converted back to the 419-nm form but was converted to a new state showing an absorption peak at 416 nm. The Type II spectral change-inducing interaction of a ligand with the cytochrome could occur with all forms of the cytochrome. 3. Both Type II and modified Type II compounds bound to the cytochrome at heme iron, and converted the cytochrome into modified ferrihemochromes. On the other hand, the Type I interaction occurred ina protein moiety of the cytochrome, and probably caused a conformational change of the cytochrome accompanied either by weakening of the internal ligand interaction or by displacement of the ligand with another one having a weaker field at the heme iron. 4. Type I and each of other two types of binding of compounds with cytochrome P-450 could occur simultaneously.