Offsetting, relations, and blending with perturbation functions

Transformations of geometric objects are described for offsetting. Free forms based on the perturbation functions have an advantage of spline representation of surfaces, that is, a high degree of smoothness, and an advantage of arbitrary form for a small number of perturbation functions.

[1]  A. Ricci,et al.  A Constructive Geometry for Computer Graphics , 1973, Computer/law journal.

[2]  A. Requicha,et al.  CONSTANT-RADIUS BLENDING IN SOLID MODELLING , 1984 .

[3]  Sergey I. Vyatkin,et al.  An Interactive System for Modeling, Animating and Rendering of Functionally Defined Objects , 2014 .

[4]  S. V. Pavlov,et al.  Methods of Processing Video Polarimetry Information Based on Least-Squares and Fourier Analysis , 2013 .

[5]  S. V. Pavlov,et al.  Methods of processing biomedical image of retinal macular region of the eye , 2013, Optical Engineering + Applications.

[6]  C. A. Hobson,et al.  Digital signal processing systems architectures for image processing , 1995 .

[7]  S. V. Pavlov,et al.  New method to control color intensity for antialiasing , 2015, 2015 International Siberian Conference on Control and Communications (SIBCON).

[8]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[9]  Sergei I. Vyatkin,et al.  VISUALIZATION OF 3D AMORPHOUS OBJECTS USING FREE FORMS , 2015 .

[10]  Dariusz Frejlichowski Application of Selected Geometrical 3D Object Description Algorithms to the Problem of Model Retrieval , 2015 .

[11]  Alexander Fish,et al.  An adaptive center of mass detection system employing a 2-D dynamic element matching algorithm for object tracking , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[12]  S. I. Vyatkin,et al.  Complex surface modeling using perturbation functions , 2007 .