Block Krylov Subspace Recycling for Shifted Systems with Unrelated Right-Hand Sides
暂无分享,去创建一个
[1] Zhaojun Bai,et al. The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..
[2] Andreas Frommer,et al. MANY MASSES ON ONE STROKE: ECONOMIC COMPUTATION OF QUARK PROPAGATORS , 1995 .
[3] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[4] E. Sturler,et al. Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .
[5] M. Sadkane,et al. Exact and inexact breakdowns in the block GMRES method , 2006 .
[6] Kirk M. Soodhalter,et al. A block MINRES algorithm based on the band Lanczos method , 2013, Numerical Algorithms.
[7] Andreas Frommer,et al. BiCGStab(ℓ) for Families of Shifted Linear Systems , 2003, Computing.
[8] Martin H. Gutknecht,et al. A QR-decomposition of block tridiagonal matrices generated by the block Lanczos process , 2005 .
[9] Tony F. Chan,et al. Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..
[10] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[11] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[12] André Gaul,et al. Recycling Krylov subspace methods for sequences of linear systems , 2014 .
[13] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[14] James Baglama,et al. Dealing with linear dependence during the iterations of the restarted block Lanczos methods , 2000, Numerical Algorithms.
[15] Wayne Joubert,et al. On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..
[16] Fei Xue,et al. Krylov Subspace Recycling for Sequences of Shifted Linear Systems , 2013, ArXiv.
[17] Luc Giraud,et al. Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] D. Walton,et al. The numerical solution of , 1977 .
[20] Elizabeth R. Jessup,et al. A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..
[21] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[22] Nico Schlomer,et al. Preconditioned Recycling Krylov subspace methods for self-adjoint problems , 2012 .
[23] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[24] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[25] Khalide Jbilou,et al. Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.
[26] Jörg Liesen,et al. A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..
[27] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[28] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[29] Jocelyne Erhel,et al. Augmented conjugate gradient. Application in an iterative process for the solution of scattering problems , 1998, Numerical Algorithms.
[30] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[31] Valeria Simoncini,et al. On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..
[32] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[33] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[34] Gang Wu,et al. Preconditioning the Restarted and Shifted Block FOM Algorithm for Matrix Exponential Computation , 2014, 1405.0707.
[35] V. Simoncini,et al. Convergence properties of block GMRES and matrix polynomials , 1996 .
[36] Gang Wu,et al. A Preconditioned and Shifted GMRES Algorithm for the PageRank Problem with Multiple Damping Factors , 2012, SIAM J. Sci. Comput..
[37] Andreas Frommer,et al. A deflated conjugate gradient method for multiple right hand sides and multiple shifts , 2014, Numerical Algorithms.
[38] Miloud Sadkane,et al. A Convergence Analysis of Gmres and Fom Methods for Sylvester Equations , 2002, Numerical Algorithms.
[39] Martin B. van Gijzen,et al. Nested Krylov Methods for Shifted Linear Systems , 2014, SIAM J. Sci. Comput..
[40] B. Vital. Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .
[41] V. Simoncini. Restarted Full Orthogonalization Method for Shifted Linear Systems , 2003 .
[42] R. Morgan,et al. Deflated GMRES for systems with multiple shifts and multiple right-hand sides☆ , 2007, 0707.0502.
[43] Martin B. van Gijzen,et al. Preconditioned Multishift BiCG for ℋ2-Optimal Model Reduction , 2017, SIAM J. Matrix Anal. Appl..
[44] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[45] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[46] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[47] M. Gutknecht,et al. The block grade of a block Krylov space , 2009 .
[48] Kirk M. Soodhalter,et al. Stagnation of block GMRES and its relationship to block FOM , 2014, ArXiv.
[49] GradientJocelyne Erhel,et al. An augmented subspace Conjugate , 1997 .
[50] A. Dubrulle,et al. Retooling the method of block conjugate gradients. , 2001 .
[51] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[52] Mark Embree,et al. The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..
[53] Anthony T. Chronopoulos,et al. Block s‐step Krylov iterative methods , 2010, Numer. Linear Algebra Appl..
[54] Lothar Reichel,et al. Augmented GMRES‐type methods , 2007, Numer. Linear Algebra Appl..
[55] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[56] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[57] Jörg Liesen,et al. A FRAMEWORK FOR DEFLATED AND AUGMENTED KRYLOV , 2013 .
[58] Peter K. Kitanidis,et al. A Flexible Krylov Solver for Shifted Systems with Application to Oscillatory Hydraulic Tomography , 2012, SIAM J. Sci. Comput..
[59] Martin H. Gutknecht,et al. Updating the QR decomposition of block tridiagonal and block Hessenberg matrices generated by block Krylov space methods , 2005 .
[60] Daniel Kressner,et al. Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..
[61] M. Gutknecht,et al. SPECTRAL DEFLATION IN KRYLOV SOLVERS: A THEORY OF COORDINATE SPACE BASED METHODS , 2012 .
[62] V. Simoncini,et al. On the numerical solution ofAX −XB =C , 1996 .
[63] Andreas Frommer,et al. Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..
[64] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[65] Valeria Simoncini,et al. Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..