Block Krylov Subspace Recycling for Shifted Systems with Unrelated Right-Hand Sides

Many Krylov subspace methods for shifted linear systems take advantage of the invariance of the Krylov subspace under a shift of the matrix. However, exploiting this fact in the non-Hermitian case introduces restrictions; e.g., initial residuals must be collinear and this collinearity must be maintained at restart. Thus we cannot simultaneously solve shifted systems with unrelated right-hand sides using this strategy, and all shifted residuals cannot be simultaneously minimized over a Krylov subspace such that collinearity is maintained. It has been shown that this renders them generally incompatible with techniques of subspace recycling [K. M. Soodhalter, D. B. Szyld, and F. Xue, Appl. Numer. Math., 81C (2014), pp. 105--118]. This problem, however, can be overcome. By interpreting a family of shifted systems as one Sylvester equation, we can take advantage of the known “shift invariance” of the Krylov subspace generated by the Sylvester operator. Thus we can simultaneously solve all systems over one bloc...

[1]  Zhaojun Bai,et al.  The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides , 2010, SIAM J. Matrix Anal. Appl..

[2]  Andreas Frommer,et al.  MANY MASSES ON ONE STROKE: ECONOMIC COMPUTATION OF QUARK PROPAGATORS , 1995 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[5]  M. Sadkane,et al.  Exact and inexact breakdowns in the block GMRES method , 2006 .

[6]  Kirk M. Soodhalter,et al.  A block MINRES algorithm based on the band Lanczos method , 2013, Numerical Algorithms.

[7]  Andreas Frommer,et al.  BiCGStab(ℓ) for Families of Shifted Linear Systems , 2003, Computing.

[8]  Martin H. Gutknecht,et al.  A QR-decomposition of block tridiagonal matrices generated by the block Lanczos process , 2005 .

[9]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[10]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[11]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[12]  André Gaul,et al.  Recycling Krylov subspace methods for sequences of linear systems , 2014 .

[13]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[14]  James Baglama,et al.  Dealing with linear dependence during the iterations of the restarted block Lanczos methods , 2000, Numerical Algorithms.

[15]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[16]  Fei Xue,et al.  Krylov Subspace Recycling for Sequences of Shifted Linear Systems , 2013, ArXiv.

[17]  Luc Giraud,et al.  Flexible GMRES with Deflated Restarting , 2010, SIAM J. Sci. Comput..

[18]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[19]  D. Walton,et al.  The numerical solution of , 1977 .

[20]  Elizabeth R. Jessup,et al.  A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..

[21]  James Demmel,et al.  Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[22]  Nico Schlomer,et al.  Preconditioned Recycling Krylov subspace methods for self-adjoint problems , 2012 .

[23]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[24]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[25]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.

[26]  Jörg Liesen,et al.  A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..

[27]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[28]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[29]  Jocelyne Erhel,et al.  Augmented conjugate gradient. Application in an iterative process for the solution of scattering problems , 1998, Numerical Algorithms.

[30]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[31]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[32]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[33]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[34]  Gang Wu,et al.  Preconditioning the Restarted and Shifted Block FOM Algorithm for Matrix Exponential Computation , 2014, 1405.0707.

[35]  V. Simoncini,et al.  Convergence properties of block GMRES and matrix polynomials , 1996 .

[36]  Gang Wu,et al.  A Preconditioned and Shifted GMRES Algorithm for the PageRank Problem with Multiple Damping Factors , 2012, SIAM J. Sci. Comput..

[37]  Andreas Frommer,et al.  A deflated conjugate gradient method for multiple right hand sides and multiple shifts , 2014, Numerical Algorithms.

[38]  Miloud Sadkane,et al.  A Convergence Analysis of Gmres and Fom Methods for Sylvester Equations , 2002, Numerical Algorithms.

[39]  Martin B. van Gijzen,et al.  Nested Krylov Methods for Shifted Linear Systems , 2014, SIAM J. Sci. Comput..

[40]  B. Vital Etude de quelques methodes de resolution de problemes lineaires de grande taille sur multiprocesseur , 1990 .

[41]  V. Simoncini Restarted Full Orthogonalization Method for Shifted Linear Systems , 2003 .

[42]  R. Morgan,et al.  Deflated GMRES for systems with multiple shifts and multiple right-hand sides☆ , 2007, 0707.0502.

[43]  Martin B. van Gijzen,et al.  Preconditioned Multishift BiCG for ℋ2-Optimal Model Reduction , 2017, SIAM J. Matrix Anal. Appl..

[44]  R. Freund,et al.  A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .

[45]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[46]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[47]  M. Gutknecht,et al.  The block grade of a block Krylov space , 2009 .

[48]  Kirk M. Soodhalter,et al.  Stagnation of block GMRES and its relationship to block FOM , 2014, ArXiv.

[49]  GradientJocelyne Erhel,et al.  An augmented subspace Conjugate , 1997 .

[50]  A. Dubrulle,et al.  Retooling the method of block conjugate gradients. , 2001 .

[51]  D. O’Leary The block conjugate gradient algorithm and related methods , 1980 .

[52]  Mark Embree,et al.  The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..

[53]  Anthony T. Chronopoulos,et al.  Block s‐step Krylov iterative methods , 2010, Numer. Linear Algebra Appl..

[54]  Lothar Reichel,et al.  Augmented GMRES‐type methods , 2007, Numer. Linear Algebra Appl..

[55]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[56]  Roland W. Freund,et al.  A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..

[57]  Jörg Liesen,et al.  A FRAMEWORK FOR DEFLATED AND AUGMENTED KRYLOV , 2013 .

[58]  Peter K. Kitanidis,et al.  A Flexible Krylov Solver for Shifted Systems with Application to Oscillatory Hydraulic Tomography , 2012, SIAM J. Sci. Comput..

[59]  Martin H. Gutknecht,et al.  Updating the QR decomposition of block tridiagonal and block Hessenberg matrices generated by block Krylov space methods , 2005 .

[60]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[61]  M. Gutknecht,et al.  SPECTRAL DEFLATION IN KRYLOV SOLVERS: A THEORY OF COORDINATE SPACE BASED METHODS , 2012 .

[62]  V. Simoncini,et al.  On the numerical solution ofAX −XB =C , 1996 .

[63]  Andreas Frommer,et al.  Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..

[64]  Efstratios Gallopoulos,et al.  An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..

[65]  Valeria Simoncini,et al.  Computational Methods for Linear Matrix Equations , 2016, SIAM Rev..