MUSES: MUlti-sensor Soil Electromagnetic Sounding

Abstract The authors describe the performance of a multi-sensor package designed to measure the electromagnetic properties of the subsurface during future landing missions to Mars. The package consists of a soil dielectric spectroscopy probe (SDSP), a ground penetrating radar (GPR) and a time domain electromagnetic measurement (TDEM) system that, using different methods, estimate the electromagnetic properties of the shallow subsurface at different depths (0– 100 m ). A data fusion approach is considered to improve the reliability and accuracy of the measurements.

[1]  Robert E. Grimm,et al.  Low‐frequency electromagnetic exploration for groundwater on Mars , 2002 .

[2]  R. Grard A quadrupole system for measuring in situ the complex permittivity of materials: application to penetrators and landers for planetary exploration , 1990 .

[3]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[4]  Evaggelos Geraniotis,et al.  Robust data fusion for multisensor detection systems , 1990, IEEE Trans. Inf. Theory.

[5]  John M. Reynolds,et al.  An Introduction to Applied and Environmental Geophysics , 1997 .

[6]  R. Grard A quadrupolar array for measuring the complex permittivity of the ground - Application to earth prospection and planetary exploration , 1990 .

[7]  G. R. Olhoeft,et al.  Magnetic relaxation and the electromagnetic response parameter , 1974 .

[8]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[9]  J. Oerlemans,et al.  Temporal and spatial variability of the surface energy balance in Dronning Maud Land, East Antarctica , 2002 .

[10]  A. Tabbagh,et al.  In situ measurement of medium-frequency apparent permittivity using an electrostatic quadrupole. Application to the determination of the water content of wheat , 1999 .

[11]  S. K. Runcorn,et al.  Interpretation theory in applied geophysics , 1965 .

[12]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[13]  A. Tabbagh,et al.  DETERMINATION OF ELECTRICAL PROPERTIES OF THE GROUND AT SHALLOW DEPTH WITH AN ELECTROSTATIC QUADRUPOLE: FIELD TRIALS ON ARCHAEOLOGICAL SITES1 , 1993 .

[14]  A. von Hippel,et al.  The dielectric relaxation spectra of water, ice, and aqueous solutions, and their interpretation. III. Proton organization and proton transfer in ice , 1988 .

[15]  Tamaz Chelidze,et al.  Electrical spectroscopy of porous rocks: a review—I. Theoretical models , 1999 .

[16]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[17]  Misac N. Nabighian,et al.  Electromagnetic Methods in Applied Geophysics , 1988 .

[18]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[19]  Philippe Paillou,et al.  On Water Detection in the Martian Subsurface Using Sounding Radar , 2001 .

[20]  Elena Pettinelli,et al.  Frequency and time domain permittivity measurements on solid CO2 and solid CO2–soil mixtures as Martian soil simulants , 2003 .

[21]  A. Tabbagh,et al.  A mobile four‐electrode array and its application to the electrical survey of planetary grounds at shallow depths , 1991 .