Constrained State Estimation - A Review

Increasingly for many real-world applications in signal processing, nonlinearity, non-Gaussianity, and additional constraints are considered while handling dynamic state estimation problems. This paper provides a critical review of the state of the art in constrained Bayesian state estimation for linear and nonlinear state-space systems. Specifically, we provide a review of unconstrained estimation using Kalman filters for the linear system, and their extensions for the nonlinear state-space system including extended Kalman filters, unscented Kalman filters, and ensemble Kalman filters. In addition, we present the particle filters for nonlinear state space systems and discuss recent advances. Next, we review constrained state estimation using all these filters where we highlighted the advantages and disadvantages of the different recent approaches.

[1]  S.L. Shah,et al.  Constrained state estimation using the ensemble Kalman filter , 2008, 2008 American Control Conference.

[2]  Souad Chebbi,et al.  EEG dynamic source localization using constrained particle filtering , 2016, 2016 IEEE Symposium Series on Computational Intelligence (SSCI).

[3]  W. Blair,et al.  Use of a kinematic constraint in tracking constant speed, maneuvering targets , 1993, IEEE Trans. Autom. Control..

[4]  L. Imsland,et al.  Constrained state estimation using the Unscented Kalman Filter , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[5]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[6]  Ghaleb Hoblos,et al.  A gain modification form for Kalman filtering under state inequality constraints , 2010 .

[7]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[8]  Raphael Andreas Hauser,et al.  Kalman Filtering with Equality and Inequality State Constraints , 2007, 0709.2791.

[9]  Alireza Rouhani,et al.  Constrained Iterated Unscented Kalman Filter for Dynamic State and Parameter Estimation , 2018, IEEE Transactions on Power Systems.

[10]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[11]  Erik Blasch,et al.  Kalman Filtering with Nonlinear State Constraints , 2006, 2006 9th International Conference on Information Fusion.

[12]  Zhansheng Duan,et al.  The Role of Pseudo Measurements in Equality-Constrained State Estimation , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[14]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[15]  Egils Sviestins,et al.  A robust and efficient Particle Filter for target tracking with spatial constraints , 2013, Proceedings of the 16th International Conference on Information Fusion.

[16]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[17]  Dennis S. Bernstein,et al.  Please Scroll down for Article International Journal of Control State Estimation for Linear and Non-linear Equality-constrained Systems State Estimation for Linear and Non-linear Equality-constrained Systems , 2022 .

[18]  Hugh F. Durrant-Whyte,et al.  Model-based multi-sensor data fusion , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[19]  Ondrej Straka,et al.  Truncated randomized unscented Kalman filter for interval constrained state estimation , 2013, Proceedings of the 16th International Conference on Information Fusion.

[20]  Hyondong Oh,et al.  Persistent standoff tracking guidance using constrained particle filter for multiple UAVs , 2019 .

[21]  Yong-An Zhang,et al.  Some results on linear equality constrained state filtering , 2013, Int. J. Control.

[22]  Sirish L. Shah,et al.  Nonlinear Bayesian state estimation: A review of recent developments , 2012 .

[23]  Jun Hu,et al.  Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements , 2013, Int. J. Control.

[24]  Erik Blasch,et al.  Track Fusion with Road Constraints , 2007, 2007 10th International Conference on Information Fusion.

[25]  Raghunathan Rengaswamy,et al.  Reply to Comments on “Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation” (URNDDR) , 2009 .

[26]  P. Djurić,et al.  A fast-weighted Bayesian bootstrap filter for nonlinear model state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Sridhar Ungarala A direct sampling particle filter from approximate conditional density function supported on constrained state space , 2011, Comput. Chem. Eng..

[28]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[29]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[30]  Richard Gates,et al.  A Mata Geweke–Hajivassiliou–Keane Multivariate Normal Simulator , 2006 .

[31]  William O'Brien,et al.  Sequential state prediction and parameter estimation with constrained dual extended Kalman filter for building zone thermal responses , 2019, Energy and Buildings.

[32]  D. Simon,et al.  Kalman filtering with state equality constraints , 2002 .

[33]  Zhansheng Duan,et al.  Best linear unbiased state estimation with noisy and noise-free measurements , 2009, 2009 12th International Conference on Information Fusion.

[34]  Biao Huang,et al.  Constrained Bayesian state estimation – A comparative study and a new particle filter based approach , 2010 .

[35]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[36]  Kayvan Najarian,et al.  An extended Kalman filter with inequality constraints for real-time detection of intradialytic hypotension , 2017, 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[37]  M. Simandl,et al.  An Efficient Constrained Gaussian Particle Filter , 2011 .

[38]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[39]  Sirish L. Shah,et al.  Constrained Nonlinear State Estimation Using Ensemble Kalman Filters , 2010 .

[40]  Dan Simon,et al.  Kalman Filtering with Statistical State Constraints , 2006, Control. Intell. Syst..

[41]  Donald L. Simon,et al.  Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering , 2005 .

[42]  Kallol Roy,et al.  Modified Unscented Recursive Nonlinear Dynamic Data Reconciliation for Constrained State Estimation , 2010 .

[43]  D. Simon,et al.  Kalman filtering with inequality constraints for turbofan engine health estimation , 2006 .

[44]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[45]  Ondrej Straka,et al.  Truncation nonlinear filters for state estimation with nonlinear inequality constraints , 2012, Autom..

[46]  Joseph J. LaViola,et al.  On Kalman Filtering With Nonlinear Equality Constraints , 2007, IEEE Transactions on Signal Processing.

[47]  Jun Hu,et al.  Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises , 2013, Autom..

[48]  Dan Simon,et al.  Constrained Kalman filtering via density function truncation for turbofan engine health estimation , 2010, Int. J. Syst. Sci..

[49]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[50]  Raghunathan Rengaswamy,et al.  Recursive estimation in constrained nonlinear dynamical systems , 2005 .

[51]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[52]  Mario A. Rotea,et al.  State Estimation with Probability Constraints , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[53]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[54]  Jie Zhou,et al.  The Linear Minimum Mean-Square Error Estimation with Constraints and Its Applications , 2006, 2006 International Conference on Computational Intelligence and Security.

[55]  Vinay Prasad,et al.  Reservoir history matching using constrained ensemble Kalman filtering , 2018 .

[56]  Wen-Hua Chen,et al.  An Auxiliary Particle Filtering Algorithm With Inequality Constraints , 2017, IEEE Transactions on Automatic Control.

[57]  Raghunathan Rengaswamy,et al.  Constrained unscented recursive estimator for nonlinear dynamic systems , 2012 .

[58]  Sirish L. Shah,et al.  Recursive constrained state estimation using modified extended Kalman filter , 2014, Comput. Chem. Eng..

[59]  Fredrik Gustafsson,et al.  On Resampling Algorithms for Particle Filters , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[60]  F. Markley Attitude Error Representations for Kalman Filtering , 2003 .

[61]  Min-Jea Tahk,et al.  Target tracking problems subject to kinematic constraints , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[62]  Bjarne A. Foss,et al.  Constrained nonlinear state estimation based on the UKF approach , 2009, Comput. Chem. Eng..

[63]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[64]  Biao Huang,et al.  A particle filter based on a constrained sampling method for state estimation , 2012, 2012 15th International Conference on Information Fusion.

[65]  G. Hoblos,et al.  State estimation under nonlinear state inequality constraints. A tracking application , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[66]  N. Amor,et al.  Hand Movement Discrimination Using Particle Filters , 2018, 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

[67]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[68]  F. Gland,et al.  Large sample asymptotics for the ensemble Kalman filter , 2009 .

[69]  Gunter Reinig,et al.  Constrained particle filtering using Gaussian sum approximations , 2008 .

[70]  Kamran Iqbal,et al.  Neural drive estimation using the hypothesis of muscle synergies and the state-constrained Kalman filter , 2013, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER).

[71]  Garry Einicke,et al.  Nonlinear Prediction, Filtering and Smoothing , 2012 .

[72]  F. Chang,et al.  Filtering method for nonlinear systems with constraints , 2002 .

[73]  Sirish L. Shah,et al.  On the choice of importance distributions for unconstrained and constrained state estimation using particle filter , 2011 .

[74]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[75]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[76]  H.J. Chizeck,et al.  Recursive parameter identification of constrained systems: an application to electrically stimulated muscle , 1991, IEEE Transactions on Biomedical Engineering.

[77]  Wen-Hua Chen,et al.  Truncated unscented particle filter for dealing with non-linear inequality constraints , 2014, 2014 Sensor Signal Processing for Defence (SSPD).

[78]  Zhansheng Duan,et al.  Design and analysis of linear equality constrained dynamic systems , 2012, 2012 15th International Conference on Information Fusion.

[79]  Yong-an Zhang,et al.  Some results on Kalman filtering with linear equality state constraints , 2011, 2011 6th IEEE Conference on Industrial Electronics and Applications.

[80]  Souad Chebbi,et al.  On the Convergence of Constrained Particle Filters , 2017, IEEE Signal Processing Letters.

[81]  S. Ungarala,et al.  Constrained Bayesian State Estimation Using a Cell Filter , 2008 .

[82]  Petar M. Djuric,et al.  Gaussian particle filtering , 2003, IEEE Trans. Signal Process..

[83]  Keyu Li,et al.  8th International IFAC Symposium on Dynamics and Control of Process Systems CONSTRAINED EXTENDED KALMAN FILTER FOR NONLINEAR STATE ESTIMATION , 2007 .

[84]  Kallol Roy,et al.  Optimization-Based Sigma Points Selection for Constrained State Estimation , 2013 .

[85]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[86]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[87]  Nachi Gupta,et al.  Mathematically Equivalent Approaches for Equality Constrained Kalman Filtering , 2009 .

[88]  C. S. Agate,et al.  Road-Constrained Target Tracking and Identification Using a Particle Filter , 2003 .

[89]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[90]  Robi Polikar,et al.  Constrained state estimation in particle filters , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[91]  Miroslav Simandl,et al.  Truncated unscented particle filter , 2011, Proceedings of the 2011 American Control Conference.

[92]  C. V. Rao,et al.  Constrained process monitoring: Moving‐horizon approach , 2002 .

[93]  Weili Xiong,et al.  Constrained Dynamic Systems Estimation Based on Adaptive Particle Filter , 2014 .

[94]  Salvatore Strano,et al.  Adaptive constrained unscented Kalman filtering for real‐time nonlinear structural system identification , 2018 .

[95]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[96]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[97]  Prem K. Goel,et al.  Bayesian estimation via sequential Monte Carlo sampling - Constrained dynamic systems , 2007, Autom..

[98]  D. Bernstein,et al.  What is the ensemble Kalman filter and how well does it work? , 2006, 2006 American Control Conference.

[99]  Michael T. Heath,et al.  A Robust Null Space Method for Linear Equality Constrained State Estimation , 2010, IEEE Transactions on Signal Processing.

[100]  P. Vachhani,et al.  Robust and reliable estimation via Unscented Recursive Nonlinear Dynamic Data Reconciliation , 2006 .

[101]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[102]  Leonardo A. B. Tôrres,et al.  On unscented Kalman filtering with state interval constraints , 2010 .

[103]  Yuan-Hwang Chen,et al.  Adaptive beamforming using the constrained Kalman filter , 1993 .

[104]  A. Krener The Convergence of the Extended Kalman Filter , 2002, math/0212255.

[105]  Sirish L. Shah,et al.  Constrained State Estimation Using Particle Filters , 2008 .

[106]  Dennis S. Bernstein,et al.  State estimation for equality-constrained linear systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[107]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[108]  Howard E. Doran,et al.  Constraining Kalman Filter and Smoothing Estimates to Satisfy Time-Varying Restrictions , 1992 .

[109]  Jing Huang,et al.  State Estimation in Electric Power Grids: Meeting New Challenges Presented by the Requirements of the Future Grid , 2012, IEEE Signal Processing Magazine.

[110]  Weixin Xie,et al.  Constrained Multiple Model Particle Filtering for Bearings-Only Maneuvering Target Tracking , 2018, IEEE Access.

[111]  Alejandro Marquez-Ruiz,et al.  A new approach to constrained state estimation for discrete‐time linear systems with unknown inputs , 2018 .

[112]  Sirish L. Shah,et al.  Constrained dual ensemble Kalman filter for state and parameter estimation , 2013, 2013 American Control Conference.

[113]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[114]  M. Simandl,et al.  Sampling Densities of Particle Filter: A Survey and Comparison , 2007, 2007 American Control Conference.

[115]  Adrian Pizzinga,et al.  Constrained Kalman Filtering: Additional Results , 2010 .

[116]  C. Yang,et al.  Nonlinear constrained tracking of targets on roads , 2005, 2005 7th International Conference on Information Fusion.

[117]  Biao Huang,et al.  Constrained particle filtering methods for state estimation of nonlinear process , 2014 .

[118]  Robert R. Bitmead,et al.  State estimation for linear systems with state equality constraints , 2007, Autom..

[119]  John Porrill,et al.  Optimal Combination and Constraints for Geometrical Sensor Data , 1988, Int. J. Robotics Res..

[120]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[121]  Petar M. Djuric,et al.  Resampling Algorithms for Particle Filters: A Computational Complexity Perspective , 2004, EURASIP J. Adv. Signal Process..

[122]  Hendrik Van Brussel,et al.  A Smoothly Constrained Kalman Filter , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  N. Gupta,et al.  Kalman Filtering in the Presence of State Space Equality Constraints , 2006, 2007 Chinese Control Conference.

[124]  Bjarne A. Foss,et al.  Applying the unscented Kalman filter for nonlinear state estimation , 2008 .

[125]  Sridhar Ungarala Comments on “Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation” , 2009 .

[126]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[127]  Zhansheng Duan,et al.  Modeling and State Estimation for Dynamic Systems With Linear Equality Constraints , 2013, IEEE Transactions on Signal Processing.

[128]  Dennis S. Bernstein,et al.  Unscented filtering for interval-constrained nonlinear systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[129]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[130]  Huajing Fang,et al.  Constrained State Estimation for Nonlinear Systems with Unknown Input , 2013, Circuits Syst. Signal Process..

[131]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[132]  Martin Ulmke,et al.  Exploitation of a priori information for tracking maritime intermittent data sources , 2011, 14th International Conference on Information Fusion.