Computing powers of arbitrary Hessenberg matrices

Abstract An efficient algorithm for the computation of powers of an n × n arbitrary lower Hessenberg matrix is presented. Numerical examples are used to show the computational details. A comparison of the algorithm with two other methods of matrix multiplication proposed by Brent and by Winograd is included. Related algorithms were proposed earlier by Datta and Datta for lower Hessenberg matrices with unit super-diagonal elements, and by Barnett for the companion matrix.