Key physical processes and their model representation for projecting climate impacts on subarctic Atlantic net primary production: A synthesis

[1]  W. Cheung,et al.  Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services , 2021, Frontiers in Climate.

[2]  W. Budgell,et al.  Barents Sea plankton production and controlling factors in a fluctuating climate , 2021 .

[3]  André W. Visser,et al.  A general size- and trait-based model of plankton communities , 2020 .

[4]  T. Ziehn,et al.  The Australian Earth System Model: ACCESS-ESM1.5 , 2020 .

[5]  J. Dunne,et al.  Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO2 , 2020, Journal of Advances in Modeling Earth Systems.

[6]  Jessica Y. Luo,et al.  Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6 , 2020, Current Climate Change Reports.

[7]  M. Gehlen,et al.  Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections , 2020, Biogeosciences.

[8]  S. Bony,et al.  Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model , 2020, Journal of Advances in Modeling Earth Systems.

[9]  Wei Cheng,et al.  CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation , 2020, Geophysical Research Letters.

[10]  I. Bethke,et al.  Ocean Biogeochemical Predictions—Initialization and Limits of Predictability , 2020, Frontiers in Marine Science.

[11]  K. Arrigo,et al.  Climate effects on temporal and spatial dynamics of phytoplankton and zooplankton in the Barents Sea , 2020, Progress in Oceanography.

[12]  A. Ito,et al.  Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks , 2020, Geoscientific Model Development.

[13]  Robert J. W. Brewin,et al.  Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades , 2020, Remote. Sens..

[14]  C. Heinze,et al.  Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2) , 2020, Geoscientific Model Development.

[15]  R. Davy,et al.  The Arctic Surface Climate in CMIP6: Status and Developments since CMIP5 , 2019, Journal of Climate.

[16]  S. Sundby,et al.  Wind Intensity Is Key to Phytoplankton Spring Bloom Under Climate Change , 2019, Front. Mar. Sci..

[17]  T. Fichefet,et al.  Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport , 2019, Climate Dynamics.

[18]  A. Oka,et al.  CMIP5 model analysis of future changes in ocean net primary production focusing on differences among individual oceans and models , 2019, Journal of Oceanography.

[19]  Alexander J. Winkler,et al.  Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2 , 2019, Journal of advances in modeling earth systems.

[20]  Stevens,et al.  CMIP5 Scientific Gaps and Recommendations for CMIP6 , 2017 .

[21]  Robert Frouin,et al.  Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models , 2016, Journal of geophysical research. Oceans.

[22]  M. Perry,et al.  Evidence of small‐scale spatial structuring of phytoplankton alpha‐ and beta‐diversity in the open ocean , 2016 .

[23]  Romain Bourdallé-Badie,et al.  The impact of resolving the Rossby radius at mid-latitudes in the ocean: results from a high-resolution version of the Met Office GC2 coupled model , 2016 .

[24]  P. Heimbach,et al.  Biogeochemical versus ecological consequences of modeled ocean physics , 2016 .

[25]  K. Assmann,et al.  Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1) , 2016 .

[26]  W. Cheung,et al.  Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors , 2016 .

[27]  Mike Ashworth,et al.  Prospects for improving the representation of coastal and shelf seas in global ocean models , 2016 .

[28]  Ø. Fiksen,et al.  Scaling Laws in Phytoplankton Nutrient Uptake Affinity , 2016, Front. Mar. Sci..

[29]  Corinne Le Quéré,et al.  Drivers and uncertainties of future global marine primary production in marine ecosystem models , 2015 .

[30]  A. Yool,et al.  Future change in ocean productivity: is the Arctic the new Atlantic? , 2015 .

[31]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[32]  James T. Randerson,et al.  Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models , 2015 .

[33]  K. Arrigo,et al.  Continued increases in Arctic Ocean primary production , 2015 .

[34]  Marcello Vichi,et al.  Impact of increased grid resolution on global marine biogeochemistry , 2015 .

[35]  Annette Samuelsen,et al.  Tuning and assessment of the HYCOM-NORWECOM V2.1 biogeochemical modeling system for the North Atlantic and Arctic oceans , 2015 .

[36]  R. Stanley,et al.  Rates of summertime biological productivity in the Beaufort Gyre : a comparison between the low and record-low ice conditions of August 2011 and 2012 , 2015 .

[37]  R. Rykaczewski,et al.  Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems , 2015, Current Climate Change Reports.

[38]  M. Steinacher,et al.  A glimpse into the future composition of marine phytoplankton communities , 2014, Front. Mar. Sci..

[39]  V. Garçon,et al.  Biomass changes and trophic amplification of plankton in a warmer ocean , 2014, Global change biology.

[40]  W. Budgell,et al.  Downscaling IPCC control run and future scenario with focus on the Barents Sea , 2014, Ocean Dynamics.

[41]  F. Qiao,et al.  Evaluating CMIP5 simulations of mixed layer depth during summer , 2014 .

[42]  Dongxiao Wang,et al.  Timing and magnitude of spring bloom and effects of physical environments over the Grand Banks of Newfoundland , 2013 .

[43]  Thomas R. Anderson,et al.  MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies , 2013 .

[44]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[45]  David B. Stephenson,et al.  A Multimodel Assessment of Future Projections of North Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models , 2013 .

[46]  L. Bopp,et al.  Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms , 2013, Global Biogeochemical Cycles.

[47]  Stephanie Dutkiewicz,et al.  A size‐structured food‐web model for the global ocean , 2012 .

[48]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[49]  Rick A. Reynolds,et al.  Massive Phytoplankton Blooms Under Arctic Sea Ice , 2012, Science.

[50]  John Horne,et al.  Mesoscale Eddies Are Oases for Higher Trophic Marine Life , 2012, PloS one.

[51]  K. Arrigo,et al.  Secular trends in Arctic Ocean net primary production , 2011 .

[52]  B. Samuels,et al.  Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations , 2010 .

[53]  Andreas Oschlies,et al.  Towards an assessment of simple global marine biogeochemical models of different complexity , 2010 .

[54]  Thomas R. Anderson,et al.  Comparison of the emergent behavior of a complex ecosystem model in two ocean general circulation models , 2010 .

[55]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[56]  Kenneth L. Denman,et al.  Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation , 2008 .

[57]  Geir Ottersen,et al.  Climate and the match or mismatch between predator requirements and resource availability , 2007 .

[58]  J. Tjiputra,et al.  Assimilation of seasonal chlorophyll and nutrient data into an adjoint three‐dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization , 2007 .

[59]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[60]  Keith Lindsay,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model , 2004 .

[61]  S. Doney Major challenges confronting marine biogeochemical modeling , 1999 .

[62]  Marine Advisory Program,et al.  PHYTOPLANKTON grass of the sea , 1973 .

[63]  A. Mahadevan Submesoscale Processes , 2019, Encyclopedia of Ocean Sciences.

[64]  J. Choi,et al.  Phytoplankton and Primary Production , 2016 .

[65]  Jinlun Zhang,et al.  Ecosystem model intercomparison of under‐ice and total primary production in the Arctic Ocean , 2016 .

[66]  Gurvan Madec,et al.  Large-scale impacts of submesoscale dynamics on phytoplankton: Local and remote effects , 2012 .

[67]  Patrick Lehodey,et al.  On the use of IPCC-class models to assess the impact of climate on Living Marine Resources , 2011 .

[68]  A. Samuelsen,et al.  Influence of horizontal model grid resolution on the simulated primary production in an embedded primary production model in the Norwegian Sea , 2009 .

[69]  T. Fichefet,et al.  Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs , 2006 .

[70]  Thomas Kiørboe,et al.  Turbulence, Phytoplankton Cell Size, and the Structure of Pelagic Food Webs , 1993 .

[71]  H. Ducklow,et al.  Plankton succession and carbon cycling at 47°N 20°W during the JGOFS North Atlantic Bloom Experiment , 1993 .

[72]  E. Feigelson The Polar Regions , 1984 .

[73]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[74]  H. Sverdrup,et al.  On Conditions for the Vernal Blooming of Phytoplankton , 1953 .