Chromium single-photon emitters in diamond fabricated by ion implantation

Controlled fabrication and identification of bright single-photon emitters is at the heart of quantum optics. Here we demonstrate controlled engineering of a chromium bright single-photon source in bulk diamond by ion implantation. The Cr center has fully polarized emission with a zero-phonon line centered at 749 nm, full width at half maximum of 4 nm, an extremely short lifetime of ?1ns, and a count rate of 0.5× 106 counts/s. By combining the polarization measurements and the vibronic spectra, a model of the center has been proposed consisting of one interstitial chromium atom with a transition dipole along one of the (100) directions

[1]  J. Wrachtrup,et al.  Implantation of labelled single nitrogen vacancy centers in diamond using N15 , 2005, cond-mat/0511722.

[2]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[3]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[4]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[5]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[6]  M. D. Dood,et al.  Luminescence quantum efficiency and local optical density of states in thin film ruby made by ion implantation , 2000 .

[7]  W. Moerner,et al.  Single photons on demand from a single molecule at room temperature , 2000, Nature.

[8]  F. Jelezko,et al.  Engineering single photon emitters by ion implantation in diamond. , 2009, Applied physics letters.

[9]  C. Santori,et al.  Polarization-selective excitation of nitrogen vacancy centers in diamond , 2007, 0705.2006.

[10]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[11]  Y. Yamamoto,et al.  Triggered single photons from a quantum dot. , 2001, Physical review letters.

[12]  C. Santori,et al.  Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide , 2008, 0811.0328.

[13]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[14]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[15]  Igor Aharonovich,et al.  Two-level ultrabright single photon emission from diamond nanocrystals. , 2009, Nano letters.

[16]  D. D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005 .

[17]  Kae Nemoto,et al.  Deterministic optical quantum computer using photonic modules , 2008 .

[18]  E. Weber,et al.  Chromium and chromium-boron pairs in silicon , 1983 .

[19]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[20]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[21]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[22]  H. Weinfurter,et al.  Single photon emission from SiV centres in diamond produced by ion implantation , 2006 .

[23]  J. Wrachtrup,et al.  Stable single-photon source in the near infrared , 2004 .

[24]  K. Iakoubovskii,et al.  Alignment of Ni- and Co-related centres during the growth of high-pressure high-temperature diamond , 2004 .

[25]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[26]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[27]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[28]  Karsten Bothe,et al.  Recombination activity of interstitial chromium and chromium-boron pairs in silicon , 2007 .

[29]  A. Zaitsev,et al.  Vibronic spectra of impurity-related optical centers in diamond , 2000 .

[30]  L. C. L. Hollenberg,et al.  A highly efficient two level diamond based single photon source , 2009 .