The bar involution for quantum symmetric pairs -- hidden in plain sight
暂无分享,去创建一个
[1] S. Kolb,et al. The bar involution for quantum symmetric pairs , 2014, 1409.5074.
[2] S. Kolb,et al. Factorisation of quasi K-matrices for quantum symmetric pairs , 2018, Selecta Mathematica.
[3] G. Letzter. Symmetric Pairs for Quantized Enveloping Algebras , 1999 .
[4] M. Yakimov,et al. Symmetric pairs for Nichols algebras of diagonal type via star products , 2019, Advances in Mathematics.
[5] S. Kolb. Quantum symmetric Kac–Moody pairs , 2012, 1207.6036.
[6] Coideal Subalgebras,et al. NAZAROV-WENZL ALGEBRAS, COIDEAL SUBALGEBRAS AND CATEGORIFIED SKEW HOWE DUALITY , 2013 .
[7] C. Stroppel,et al. Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality , 2013, Advances in Mathematics.
[8] S. Kolb,et al. Universal K-matrix for quantum symmetric pairs , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[9] S. Kolb,et al. Reflection equation algebras, coideal subalgebras, and their centres , 2008, 0812.4459.
[10] Weiqiang Wang,et al. A New Approach to Kazhdan-lusztig Theory of Type $b$ Via Quantum Symmetric Pairs , 2013, 1310.0103.
[11] V. Regelskis,et al. Quasitriangular coideal subalgebras of Uq(g) in terms of generalized Satake diagrams , 2018, Bulletin of the London Mathematical Society.
[12] Weiqiang Wang,et al. Canonical bases arising from quantum symmetric pairs of Kac–Moody type , 2018, Compositio Mathematica.
[13] P. Podles,et al. Introduction to Quantum Groups , 1998 .