The bar involution for quantum symmetric pairs -- hidden in plain sight

We show that all quantum symmetric pair coideal subalgebras Bc of Kac-Moody type have a bar involution for a suitable choice of parameters c. The proof relies on a generalized notion of quasi K-matrix. The proof does not involve an explicit presentation of Bc in terms of generators and relations.

[1]  S. Kolb,et al.  The bar involution for quantum symmetric pairs , 2014, 1409.5074.

[2]  S. Kolb,et al.  Factorisation of quasi K-matrices for quantum symmetric pairs , 2018, Selecta Mathematica.

[3]  G. Letzter Symmetric Pairs for Quantized Enveloping Algebras , 1999 .

[4]  M. Yakimov,et al.  Symmetric pairs for Nichols algebras of diagonal type via star products , 2019, Advances in Mathematics.

[5]  S. Kolb Quantum symmetric Kac–Moody pairs , 2012, 1207.6036.

[6]  Coideal Subalgebras,et al.  NAZAROV-WENZL ALGEBRAS, COIDEAL SUBALGEBRAS AND CATEGORIFIED SKEW HOWE DUALITY , 2013 .

[7]  C. Stroppel,et al.  Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality , 2013, Advances in Mathematics.

[8]  S. Kolb,et al.  Universal K-matrix for quantum symmetric pairs , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[9]  S. Kolb,et al.  Reflection equation algebras, coideal subalgebras, and their centres , 2008, 0812.4459.

[10]  Weiqiang Wang,et al.  A New Approach to Kazhdan-lusztig Theory of Type $b$ Via Quantum Symmetric Pairs , 2013, 1310.0103.

[11]  V. Regelskis,et al.  Quasitriangular coideal subalgebras of Uq(g) in terms of generalized Satake diagrams , 2018, Bulletin of the London Mathematical Society.

[12]  Weiqiang Wang,et al.  Canonical bases arising from quantum symmetric pairs of Kac–Moody type , 2018, Compositio Mathematica.

[13]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .