An analysis of different types and effects of asynchronicity in cellular automata update schemes

This paper introduces the problematics deriving from the adoption of asynchronous update schemes in CA models. Several cellular automata update schemes and a tentative classification of such schemes are introduced and discussed. In order to analyze the effects of the different update schemes, a class of simple CA—called One neighbor binary cellular automata (1nCA)—is then introduced. An overview of the general features of 1nCA is described, then the effects of six different updates schemes on all the class of 1nCA are described.

[1]  Gérard Y. Vichniac,et al.  Boolean derivatives on cellular automata , 1991 .

[2]  Jonathan D. Victor,et al.  Local structure theory for cellular automata , 1987 .

[3]  Yasusi Kanada,et al.  The Effects of Randomness in Asynchronous 1D Cellular Automata , 1984 .

[4]  Scott E. Page On Incentives and Updating in Agent Based Models , 1997 .

[5]  Binder,et al.  Parametric ordering of complex systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[7]  Stefania Bandini,et al.  Regulation Function of the Environment in Agent-Based Simulation , 2006, E4MAS.

[8]  Wentian Li,et al.  Transition phenomena in cellular automata rule space , 1991 .

[9]  Wentian Li,et al.  The Structure of the Elementary Cellular Automata Rule Space , 1990, Complex Syst..

[10]  John S. McCaskill,et al.  Searching for Rhythms in Asynchronous Random Boolean Networks , 2000 .

[11]  Marco Tomassini,et al.  Semi-synchronous Activation in Scale-Free Boolean Networks , 2007, ECAL.

[12]  P.J. Antsaklis,et al.  Asynchronous Consensus Protocols: Preliminary Results, Simulations and Open Questions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  Ezequiel A. Di Paolo Searching for Rhythms in Asynchronous Random Boolean Networks , 2000 .

[14]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[15]  Nazim Fat Experimental study of Elementary Cellular Automata dynamics using the density parameter , 2003 .

[16]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[17]  Nazim Fatès,et al.  Experimental study of Elementary Cellular Automata dynamics using the density parameter , 2003, DMCS.

[18]  A. Wuensche Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1999 .

[19]  Stefania Bandini,et al.  Situated Agents Interaction: Coordinated Change of State for Adjacent Agents , 2005, PaCT.

[20]  E. F. Codd,et al.  Cellular automata , 1968 .

[21]  Klaus Sutner Classifying circular cellular automata , 1991 .

[22]  Franco Bagnoli,et al.  Cellular Automata , 2002, Lecture Notes in Computer Science.

[23]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[24]  Fabien Michel,et al.  Environments for Multi-Agent Systems III, Third International Workshop, E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected Revised and Invited Papers , 2007, E4MAS.

[25]  David G. Green,et al.  Ordered asynchronous processes in multi-agent systems , 2005 .

[26]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[27]  P.-M. Binder A Phase Diagram for Elementary Cellular Automata , 1993, Complex Syst..