Direct Numerical Determination of the Asymptotic Cyclic Behavior of Pseudoelastic Shape Memory Structures

The design of shape memory alloys (SMAs) structures against fatigue requires the computation of the stabilized mechanical state. The classical computation method, based on a plasticity-like algorithm, requires a step-by-step calculation, leading to prohibitive computation time to reach this stabilized state. To overcome this issue, we propose to extend the direct cyclic method (DCM), for elastoplastic structures, for use with the Zaki-Moumni (ZM) model for SMAs. DCM is a large time increment method in which a periodicity condition is enforced on the state variables. Comparison with the classical incremental approach shows considerable reduction in computation time.

[1]  Wael Zaki,et al.  CYCLIC BEHAVIOR AND ENERGY APPROACH OF THE FATIGUE OF SHAPE MEMORY ALLOYS , 2009 .

[2]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[3]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[4]  Kikuaki Tanaka,et al.  Phenomenological analysis of thermomechanical training in an Fe-based shape memory alloy , 1998 .

[5]  G. Bourbon,et al.  Thermodynamical model of cyclic behaviour of TiNi and CuZnAl shape memory alloys under isothermal undulated tensile tests , 1996 .

[6]  Nguyen Quoc Son On the elastic plastic initial‐boundary value problem and its numerical integration , 1977 .

[7]  Pierre Ladevèze,et al.  A new approach in non‐linear mechanics: The large time increment method , 1990 .

[8]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[9]  A. Masud,et al.  A variational multiscale method for inelasticity: Application to superelasticity in shape memory alloys , 2006 .

[10]  Andrzej Truty,et al.  Stabilized finite elements applied to elastoplasticity: I. Mixed displacement–pressure formulation , 2004 .

[11]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[12]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[13]  Ziad Moumni,et al.  Fatigue analysis of shape memory alloys: energy approach , 2005 .

[14]  Jean-Jacques Thomas,et al.  Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique , 2002 .

[15]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[16]  T. P. G. Thamburaja,et al.  The evolution of microstructure during twinning: Constitutive equations, finite-element simulations and experimental verification , 2009 .

[17]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[18]  Wael Zaki,et al.  A 3D model of the cyclic thermomechanical behavior of shape memory alloys , 2007 .

[19]  E. Sacco,et al.  Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching–bending loadings , 2001 .

[20]  Sang-Joo Kim,et al.  Cyclic effects in shape-memory alloys: a one-dimensional continuum model , 1997 .

[21]  L. C. Brinson,et al.  Phase diagram based description of the hysteresis behavior of shape memory alloys , 1998 .

[22]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[23]  Claude Stolz,et al.  An optimal control approach to the analysis of inelastic structures under cyclic loading , 2003 .