Phytotoxicity of organic extracts of five medicinal plants of the Neotropical savanna.

Medicinal plants produce a high diversity of secondary metabolites with different biological activities, which are commonly evaluated when prospecting for bioherbicides. We analyzed the phytotoxic activity of organic extracts from the leaves of five medicinal species, Byrsonima intermedia, Moquiniastrum polymorphum, Luehea candicans, Miconia chamissois, and Qualea cordata. Phytotoxicity was evaluated on the initial growth of cucumber seedlings through tests with different concentrations of hexane, ethyl acetate, and methanol extracts. The results showed that all organic extracts and all concentrations affected cucumber development, with methanol extracts generally showing the greatest negative effect on the initial growth of the target species. The only exception was for M. chamissois extracts, in which the hexane extract had the greatest phytotoxicity. Furthermore, the organic extracts were subjected to preliminary phytochemical analysis, revealing the widespread presence of alkaloids along with other chemical classes. All the study species are thus potential candidates for use as natural herbicides.

[1]  S. Martins,et al.  Allelopathic potential and phytochemical screening of Piper divaricatum extracts on germination and growth of indicator plant (Lactuca sativa) , 2021 .

[2]  R. Reis,et al.  Bioprospecting of Natural Compounds from Brazilian Cerrado Biome Plants in Human Cervical Cancer Cell Lines , 2021, International journal of molecular sciences.

[3]  T. Anwar,et al.  Evaluation of bioherbicidal potential of Carica papaya leaves. , 2020, Brazilian journal of biology = Revista brasleira de biologia.

[4]  A. Zarrelli,et al.  Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars , 2020 .

[5]  R. Reis,et al.  Matteucinol, isolated from Miconia chamissois, induces apoptosis in human glioblastoma lines via the intrinsic pathway and inhibits angiogenesis and tumor growth in vivo , 2019, Investigational New Drugs.

[6]  A. S. Moreira,et al.  Genus Moquiniastrum (Asteraceae): Overview of Chemical and Bioactivity Studies , 2019, Current Bioactive Compounds.

[7]  M. Nowack,et al.  The Root Cap Cuticle: A Cell Wall Structure for Seedling Establishment and Lateral Root Formation , 2019, Cell.

[8]  J. Crowet,et al.  Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane , 2018, Scientific Reports.

[9]  Artur M. S. Silva,et al.  Gas chromatography–mass spectrometry profile of four Calendula L. taxa : A comparative analysis , 2017 .

[10]  S. Gualtieri,et al.  Phytotoxic potential of young leaves from Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae). , 2016, Brazilian journal of biology = Revista brasleira de biologia.

[11]  Mardi M Algandaby,et al.  Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia , 2016, Saudi journal of biological sciences.

[12]  J. Fernandes,et al.  Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and Meliaceae families , 2014 .

[13]  M. J. Reigosa,et al.  Allelopathic research in Brazil , 2013 .

[14]  A. Tanveer,et al.  Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat , 2012 .

[15]  A. Chambery,et al.  Oleanane saponins from Bellis sylvestris Cyr. and evaluation of their phytotoxicity on Aegilops geniculata Roth. , 2012, Phytochemistry.

[16]  L. Kohn,et al.  Antiproliferative activity of Luehea candicans Mart. et Zucc. (Tiliaceae) , 2012, Natural product research.

[17]  A. Giusti-Paiva,et al.  Anti-inflammatory effect of extract and fractions from the leaves of Byrsonima intermedia A. Juss. in rats. , 2011, Journal of ethnopharmacology.

[18]  A. Giusti-Paiva,et al.  Anti-inflammatory and antinociceptive effects of the stem bark of Byrsonima intermedia A. Juss. , 2011, Journal of ethnopharmacology.

[19]  V. Bolzani,et al.  Vochysiaceae: secondary metabolites, ethnopharmacology and pharmacological potential , 2011, Phytochemistry Reviews.

[20]  P. Joseph-Nathan,et al.  Bioactive saponins from Microsechium helleri and Sicyos bulbosus. , 2011, Phytochemistry.

[21]  M. Teerarak,et al.  Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. , 2010, Bioresource technology.

[22]  Reginaldo S. Matsumoto,et al.  Potencial alelopático do extrato foliar de Annona glabra L. (Annonaceae) , 2010 .

[23]  S. Duke,et al.  Natural products in crop protection. , 2009, Bioorganic & medicinal chemistry.

[24]  Hérida Regina Nunes Salgado,et al.  Antimicrobial activity of Byrsonima species (Malpighiaceae) , 2008 .

[25]  A. Fett-Neto,et al.  Allelopathic potential of Psychotria leiocarpa, a dominant understorey species of subtropical forests , 2008 .

[26]  Devanand L. Luthria,et al.  Influence of sample preparation on assay of phenolic acids from eggplant. , 2006, Journal of agricultural and food chemistry.

[27]  J. Tanaka,et al.  Constituintes químicos de Luehea divaricata Mart. (Tiliaceae) , 2005 .

[28]  I. Chung,et al.  Assessment of allelopathic potential of barnyard grass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars , 2001 .

[29]  E. Schenkel,et al.  Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha . , 2000, Phytotherapy research : PTR.

[30]  C. J. Nelson,et al.  Effects of light, growth media, and seedling orientation on bioassays of alfalfa autotoxicity. , 2000 .

[31]  Dayan,et al.  Natural products as sources of herbicides: current status and future trends , 2000 .

[32]  E. Schenkel,et al.  Antiviral activity of south Brazilian medicinal plant extracts. , 1999, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[33]  J. Lovett,et al.  Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals , 1993, Journal of Chemical Ecology.

[34]  F. A. Villela,et al.  Tabela de potencial osmótico em função da concentração de polietileno glicol 6.000 e da temperatura , 1991 .

[35]  C. Eberlein Germination of Sorghum almum Seeds and Longevity in Soil , 1987, Weed Science.

[36]  Extracts , 1869, The Indian medical gazette.

[37]  M. Praça-Fontes,et al.  Phytotoxicity and cytogenetic action mechanism of leaf extracts of Psidium cattleyanum Sabine in plant bioassays. , 2022, Brazilian journal of biology = Revista brasleira de biologia.

[38]  C. Nunez,et al.  Phytotoxicity of plant extracts of Vismia japurensis cultivated in vivo and in vitro. , 2021, Brazilian journal of biology = Revista brasleira de biologia.

[39]  S. Scheffer-Basso,et al.  Allelopathy and Allelochemicals of Eragrostis plana (Poaceae) and its Relation with Phenology and Nitrogen Fertilization , 2017 .

[40]  R. M. Kolb,et al.  Seasonality affects phytotoxic potential of five native species of Neotropical savanna , 2016 .

[41]  E. Valcheva,et al.  A Case Study of Allelopathic Effect on Weeds in Wheat , 2015 .

[42]  M. B. Quilles,et al.  Natural Products with Activity against Multidrug-Resistant Tumor Cells , 2013 .

[43]  Fernanda Guilhon-Simplicio,et al.  Aspectos químicos e farmacológicos de Byrsonima (Malpighiaceae) , 2011 .

[44]  E. L. Rice Allelopathy—An update , 2008, The Botanical Review.

[45]  Devanand L. Luthria,et al.  Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean , 2007 .

[46]  S. C. Wu,et al.  Saponins produced during the life cycle of mungbeans and their role as allelochemicals , 1999 .

[47]  A. Rojas de Arias,et al.  Mutagenicity, insecticidal and trypanocidal activity of some Paraguayan Asteraceae. , 1995, Journal of ethnopharmacology.