Dynamics and symmetry. Predictions for modulated waves in rotating fluids

[1]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[2]  E. Hopf A mathematical example displaying features of turbulence , 1948 .

[3]  J. Gollub,et al.  Many routes to turbulent convection , 1980, Journal of Fluid Mechanics.

[4]  David A. Rand,et al.  Doubly periodic circular Couette flow: Experiments compared with predictions from dynamics and symmetry , 1981 .

[5]  G. Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[6]  R. Pfeffer,et al.  TWO KINDS OF VACILLATION IN ROTATING LABORATORY EXPERIMENTS , 1967 .

[7]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[8]  M. Gorman,et al.  Spatial and temporal characteristics of modulated waves in the circular Couette system , 1982, Journal of Fluid Mechanics.

[9]  James Serrin,et al.  On the stability of viscous fluid motions , 1959 .

[10]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[11]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[12]  D. Ruelle Bifurcations in the presence of a symmetry group , 1973 .

[13]  R. Pfeffer,et al.  Synoptic Features and Energetics of Wave-Amplitude Vacillation in a Rotating, Differentially-Heated Fluid , 1974 .

[14]  Raymond Hide,et al.  Sloping convection in a rotating fluid , 1975 .

[15]  T. Benjamin,et al.  Bifurcation phenomena in steady flows of a viscous fluid II. Experiments , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  D. Coles Transition in circular Couette flow , 1965, Journal of Fluid Mechanics.

[17]  G. Iooss Bifurcation of maps and applications , 1979 .

[18]  G. Iooss,et al.  Elementary stability and bifurcation theory , 1980 .

[19]  E. Koschmieder,et al.  Convection in a rotating, laterally heated annulus pattern velocities and amplitude oscillations , 1981 .

[20]  David G. Schaeffer,et al.  Qualitative analysis of a model for boundary effects in the Taylor problem , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  R. Pfeffer,et al.  Wave Dispersion in a Rotating, Differentially Heated Cylindrical Annulus Of Fluid. , 1968 .

[22]  M. Gorman,et al.  Visual observation of the second characteristic mode in a quasiperiodic flow , 1979 .

[23]  H. Swinney,et al.  Dynamical instabilities and the transition to chaotic Taylor vortex flow , 1979, Journal of Fluid Mechanics.

[24]  T. Benjamin Bifurcation phenomena in steady flows of a viscous fluid. I. Theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Raymond Hide,et al.  An experimental study of thermal convection in a rotating liquid , 1958, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.