Primal Central Paths and Riemannian Distances for Convex Sets

Abstract In this paper, we study the Riemannian length of the primal central path in a convex set computed with respect to the local metric defined by a self-concordant function. Despite some negative examples, in many important situations, the length of this path is quite close to the length of a geodesic curve. We show that in the case of a bounded convex set endowed with a ν-self-concordant barrier, the length of the central path is within a factor O(ν1/4) of the length of the shortest geodesic curve.