Cyclotomic numbers and primitive idempotents in the ring GF(q)[x]/(xpn-1)
暂无分享,去创建一个
[1] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[2] S. A. Katre,et al. Complete solution of the cyclotomic problem in $F_q$ for any prime modulus $l, q = p^α, p ≡ 1 (mod l)$ , 1985 .
[3] S. Berman. Semisimple cyclic and Abelian codes. II , 1967 .
[4] S. A. Katre,et al. Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum. , 1987 .
[5] V. Pless. Introduction to the Theory of Error-Correcting Codes , 1991 .
[6] Manju Pruthi,et al. Minimal Codes of Prime-Power Length , 1997 .
[7] T. Storer. Cyclotomy and difference sets , 1967 .
[8] P. V. Wamelen. Jacobi sums over finite fields , 2002 .
[9] S. A. Katre. The Cyclotomic Problem , 2002 .
[10] Manju Pruthi,et al. Minimal Cyclic Codes of Length 2pn , 1999 .
[11] Gurmeet K. Bakshi,et al. Minimal cyclic codes of length pnq , 2003 .