Low CT temporal sampling rates result in a substantial underestimation of myocardial blood flow measurements

[1]  Damiano Caruso,et al.  Dynamic CT myocardial perfusion imaging. , 2016, European journal of radiology.

[2]  Ryohei Nakayama,et al.  Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT. , 2016, Journal of cardiovascular computed tomography.

[3]  P. V. van Ooijen,et al.  Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation , 2016, BioMed research international.

[4]  M. Oudkerk,et al.  The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT. , 2015, European journal of radiology.

[5]  R. Vliegenthart,et al.  Absolute Versus Relative Myocardial Blood Flow by Dynamic CT Myocardial Perfusion Imaging in Patients With Anatomic Coronary Artery Disease. , 2015, AJR. American journal of roentgenology.

[6]  Ernst Klotz,et al.  Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion , 2015, BioMed research international.

[7]  E. Nagel,et al.  Diagnostic Accuracy of Stress Myocardial Perfusion Imaging Compared to Invasive Coronary Angiography With Fractional Flow Reserve Meta-Analysis , 2015, Circulation. Cardiovascular imaging.

[8]  Adam M Alessio,et al.  Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT , 2014, Physics in medicine and biology.

[9]  E. Nagel,et al.  Quantitative assessment of magnetic resonance derived perfusion measurements using advanced techniques: comparison with microspheres in an explanted pig heart system , 2013, Journal of Cardiovascular Magnetic Resonance.

[10]  Bernadette A. Thomas,et al.  Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[11]  U. Schoepf,et al.  Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. , 2012, AJR. American journal of roentgenology.

[12]  E. Nagel,et al.  Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. , 2012, Journal of the American College of Cardiology.

[13]  K. Gould,et al.  Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? , 2012, JACC. Cardiovascular imaging.

[14]  Mika Teräs,et al.  Clinical Value of Absolute Quantification of Myocardial Perfusion With 15O-Water in Coronary Artery Disease , 2011, Circulation. Cardiovascular imaging.

[15]  M. Reiser,et al.  Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. , 2011, Radiology.

[16]  Marcel C M Rutten,et al.  An Ex Vivo Platform to Simulate Cardiac Physiology: A New Dimension for Therapy Development and Assessment , 2011, The International journal of artificial organs.

[17]  E. Nagel,et al.  An isolated perfused pig heart model for the development, validation and translation of novel cardiovascular magnetic resonance techniques , 2010, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[18]  W. Kalender,et al.  Quantitative Whole Heart Stress Perfusion CT Imaging as Noninvasive Assessment of Hemodynamics in Coronary Artery Stenosis: Preliminary Animal Experience , 2010, Investigative radiology.

[19]  Georges El Fakhri,et al.  Reproducibility and Accuracy of Quantitative Myocardial Blood Flow Assessment with 82Rb PET: Comparison with 13N-Ammonia PET , 2009, Journal of Nuclear Medicine.

[20]  Juhani Knuuti,et al.  Quantification of myocardial blood flow will reform the detection of CAD , 2009, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[21]  M. D'Angelica,et al.  Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas. , 2007, Surgery.

[22]  C. Mathers,et al.  Projections of Global Mortality and Burden of Disease from 2002 to 2030 , 2006, PLoS medicine.

[23]  S. Daniels,et al.  Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, , 2003, Circulation.

[24]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[25]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[26]  M E Phelps,et al.  Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  M. R. Bell,et al.  Quantitative Evaluation of Regional myocardial perfusion using fast X-ray computed tomography , 1997, Herz.

[28]  R. Weiss,et al.  Quantitation of absolute regional myocardial perfusion using cine computed tomography. , 1994, Journal of the American College of Cardiology.

[29]  A. Luxen,et al.  Direct Comparison of [13N]Ammonia and [150]Water Estimates of Perfusion With Quantification of Regional Myocardial Blood Flow by Microspheres , 1993, Circulation.

[30]  M Oudkerk,et al.  Liver metastases from colorectal carcinoma: detection with continuous CT angiography. , 1992, Radiology.

[31]  B. Brundage,et al.  Measurement of myocardial blood flow by ultrafast computed tomography. , 1987, Circulation.

[32]  L. D. Harris,et al.  The dynamic spatial reconstructor: Investigating congenital heart disease in four dimensions , 1984, CardioVascular and Interventional Radiology.

[33]  O. Langendorff,et al.  Untersuchungen am überlebenden Säugethierherzen , 1895, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[34]  S. Petersen,et al.  Diagnostic performance of hyperaemic myocardial blood flow index obtained by dynamic computed tomography: does it predict functionally significant coronary lesions? , 2014, European heart journal cardiovascular Imaging.

[35]  M. Reiser,et al.  Detection of Hemodynamically Signifi cant Coronary Artery Stenosis : Incremental Diagnostic Value of Dynamic CT-based Myocardial Perfusion Imaging 1 , 2011 .

[36]  O. Langendorff,et al.  Untersuchungen am überlebenden Säugethierherzen , 2005, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[37]  M. Marcus,et al.  Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report. , 1987, Journal of the American College of Cardiology.