Mathematik in den Naturwissenschaften Leipzig Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations

The Cauchy problem for the Korteweg—de Vries (KdV) equation with small dispersion of order ϵ2, ϵ ≪ 1, is characterized by the appearance of a zone of rapid, modulated oscillations of wavelength of order ϵ. These oscillations are approximately described by the elliptic solution of KdV where the amplitude, wave number, and frequency are not constant but evolve according to the Whitham equations. In this manuscript we give a quantitative analysis of the discrepancy between the numerical solution of the KdV equation in the small dispersion limit and the corresponding approximate solution for values of ϵ between 10−1 and 10−3. The numerical results are compatible with a difference of order ϵ close to the center within the “interior” of the Whitham oscillatory zone, of order ϵ1/3 at the left boundary outside the Whitham zone and of order √ϵ at the right boundary outside the Whitham zone. © 2007 Wiley Periodicals, Inc.

[1]  John Strain,et al.  Computing the weak limit of KdV , 1994 .

[2]  V. Kulikov Degenerate elliptic curves and resolution of uni- and bimodal singularities , 1975 .

[3]  C. David Levermore,et al.  The hyperbolic nature of the zero dispersion Kdv limit , 1988 .

[4]  Christian Klein,et al.  Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation , 2006 .

[5]  Stephanos Venakides,et al.  The Small Dispersion Limit of the Korteweg-De Vries Equation , 1987 .

[6]  C. Klein,et al.  Numerical study of a multiscale expansion of KdV and Camassa-Holm equation , 2007 .

[7]  Tamara Grava,et al.  The generation, propagation, and extinction of multiphases in the KdV zero‐dispersion limit , 2002 .

[8]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[9]  M. Vanlessen,et al.  The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation , 2007 .

[10]  Stephanos Venakides,et al.  The zero dispersion limit of the korteweg‐de vries equation for initial potentials with non‐trivial reflection coefficient , 1985 .

[11]  正人 木村 Max-Planck-Institute for Mathematics in the Sciences(海外,ラボラトリーズ) , 2001 .

[12]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[13]  Boris Dubrovin On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour , 2005 .

[14]  F. Tian,et al.  The initial value problem for the Whitham averaged system , 1994 .

[15]  Igor Krichever,et al.  Method of averaging for two-dimensional "integrable" equations , 1988 .

[16]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[17]  C. David Levermore,et al.  The Small Dispersion Limit of the Korteweg-deVries Equation. I , 1982 .

[18]  N. F. Smyth,et al.  Modulation solutions for the Benjamin-Ono equation , 1999 .

[19]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[20]  T. Grava From the Solution of the Tsarev System to the Solution of the Whitham Equations , 2000, nlin/0007016.

[21]  Fei-Ran Tian,et al.  Oscillations of the zero dispersion limit of the korteweg‐de vries equation , 1993 .

[22]  S. Venakides,et al.  Unified approach to KdV modulations , 2000, nlin/0008007.

[23]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[24]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[25]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[26]  A. Kuijlaars,et al.  Multi-critical unitary random matrix ensembles and the general Painlevé II equation , 2005 .

[27]  C. Klein,et al.  Hyperelliptic theta-functions and spectral methods , 2004, nlin/0512065.

[28]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[29]  Lloyd S. Nelson,et al.  Analysis of straight-line data , 1959 .

[30]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[31]  F. Tian On the Initial Value Problem of the Whitham Averaged System , 1994 .

[32]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[33]  S. Novikov A PERIODICITY PROBLEM FOR THE KORTEWEG–DE VRIES AND STURM–LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY , 2007 .

[34]  Stephanos Venakides,et al.  The korteweg-de vries equation with small dispersion: Higher order lax-levermore theory , 1990 .

[35]  G. Parisi,et al.  A non-perturbative ambiguity free solution of a string model , 1990 .

[36]  Bertrand Eynard,et al.  Universal distribution of random matrix eigenvalues near the ‘birth of a cut’ transition , 2006, math-ph/0605064.

[37]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[38]  Pavel Bleher,et al.  Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.

[39]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[40]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .