Extended envelopes around Galactic Cepheids

Aims. We aim to investigate the infrared excess of 45 Milky Way (MW) Cepheids combining different observables in order to constrain the presence of circumstellar envelopes (CSEs). Methods. We used the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) algorithm, a robust implementation of the parallax-of-pulsation method that combines photometry, angular diameter, stellar effective temperature, and radial velocity measurements in a global modelling of the pulsation of the Cepheid. We obtained new photometric measurements at mid-infrared (mid-IR) with the VISIR instrument at the Very Large Telescope complemented with data gathered from the literature. We then compared the mean magnitude of the Cepheids from 0.5 μm to 70 μm with stellar atmosphere models to infer the IR excess, which we attribute to the presence of a circumstellar envelope. Results. We report that at least 29% of the Cepheids of our sample have a detected IR excess (> 3σ). We estimated a mean excess of 0.08 ± 0.04 mag at 2.2 μm and 0.13 ± 0.06 mag at 10 μm. Other Cepheids possibly also have IR excess, but they were rejected due to their low detection level compared to a single-star model. We do not see any correlation between the IR excess and the pulsation period as previously suspected for MW Cepheids, but a rather constant trend at a given wavelength. We also do not find any correlation between the CO absorption and the presence of a CSE, but rather with the stellar effective temperature, which confirms that the CO features previously reported are mostly photospheric. No bias caused by the presence of the circumstellar material is detected on the average distance estimates from a SPIPS analysis with a fitted colour excess. We also do not find correlation between the presence of IR excess and the evolution stage of the Cepheids. Conclusions. We report a fraction of 29% of Cepheids with an IR excess likely produced by the circumstellar envelope surrounding the stars. Longer period Cepheids do not exhibit greater excess than short periods as previously suspected from observations and theoretical dusty-wind models. Other mechanisms such as free-free emission, among others, may be at the origin of the formation of the CSEs. We also show that not fitting the colour excess leads to a bias on the distance estimates in our Galaxy.

[1]  G. Weigelt,et al.  Mid-infrared circumstellar emission of the long-period Cepheid ℓ Carinae resolved with VLTI/MATISSE , 2021, Astronomy & Astrophysics.

[2]  E. Grebel,et al.  Atmospheric parameters of Cepheids from flux ratios with ATHOS , 2020, Astronomy & Astrophysics.

[3]  M. Groenewegen Analysing the spectral energy distributions of Galactic classical Cepheids , 2020, Astronomy & Astrophysics.

[4]  Richard I. Anderson,et al.  Consistent radial velocities of classical Cepheids from the cross-correlation technique , 2019, Astronomy & Astrophysics.

[5]  J. Monnier,et al.  Multiplicity of Galactic Cepheids from long-baseline interferometry , 2018, Astronomy & Astrophysics.

[6]  L. Szabados,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[7]  J. Monnier,et al.  A Geometrical 1% Distance to the Short-period Binary Cepheid V1334 Cygni , 2018, The Astrophysical Journal.

[8]  R. E. Luck,et al.  Cepheid Abundances: Multiphase Results and Spatial Gradients , 2018, The Astronomical Journal.

[9]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[10]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[11]  W. Gieren,et al.  Observational calibration of the projection factor of Cepheids IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids , 2017, 1708.09851.

[12]  W. Gieren,et al.  Four years' interferometric observations of Galactic binary Cepheids , 2017, 1707.00691.

[13]  R. Kudritzki,et al.  A Precision Determination of the Effect of Metallicity on Cepheid Absolute Magnitudes in VIJHK Bands from Magellanic Cloud Cepheids , 2017, 1705.10855.

[14]  Pierre Kervella,et al.  Observational calibration of the projection factor of Cepheids - III. The long-period Galactic Cepheid RS Puppis , 2017, 1701.05192.

[15]  R. I. Anderson,et al.  HARPS-N high spectral resolution observations of Cepheids I. The Baade-Wesselink projection factor of δ Cep revisited , 2017, 1701.01589.

[16]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[17]  G. Fiorentino,et al.  THE PANCHROMATIC VIEW OF THE MAGELLANIC CLOUDS FROM CLASSICAL CEPHEIDS. I. DISTANCE, REDDENING, AND GEOMETRY OF THE LARGE MAGELLANIC CLOUD DISK , 2016, 1609.03554.

[18]  B. Pilecki,et al.  VEGA/CHARA interferometric observations of Cepheids - I. A resolved structure around the prototype classical Cepheid δ Cep in the visible spectral range , 2016, 1609.07268.

[19]  A. Riess,et al.  VETTING GALACTIC LEAVITT LAW CALIBRATORS USING RADIAL VELOCITIES: ON THE VARIABILITY, BINARITY, AND POSSIBLE PARALLAX ERROR OF 19 LONG-PERIOD CEPHEIDS , 2016, 1608.00556.

[20]  Pierre Kervella,et al.  Observational calibration of the projection factor of Cepheids - II. Application to nine Cepheids with HST/FGS parallax measurements , 2016, 1601.04727.

[21]  E. Schmidt EXCESS MID-INFRARED FLUX: AN INDICATOR OF MASS LOSS IN CEPHEIDS? , 2015 .

[22]  S. Ridgway,et al.  Cepheid distances from the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) - Application to the prototypes δ Cephei and η Aquilae , 2015, 1510.01940.

[23]  H. McAlister,et al.  Robust high-contrast companion detection from interferometric observations - The CANDID algorithm and an application to six binary Cepheids , 2015, 1505.02715.

[24]  N. Mowlavi,et al.  REVEALING δ CEPHEI’S SECRET COMPANION AND INTRIGUING PAST , 2015, 1503.04116.

[25]  E. Guinan,et al.  THE SECRET LIVES OF CEPHEIDS: EVOLUTIONARY CHANGES AND PULSATION-INDUCED SHOCK HEATING IN THE PROTOTYPE CLASSICAL CEPHEID δ Cep , 2014, 1409.8628.

[26]  R. Anderson Tuning in on Cepheids: Radial velocity amplitude modulations - A source of systematic uncertainty for Baade-Wesselink distances , 2014, 1406.2605.

[27]  A. Henden,et al.  A search for evolutionary period variations of Cepheids using the Harvard plate stacks: FF Aql , 2014 .

[28]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[29]  Yu. A. Fadeyev Theoretical rates of pulsation period change in the Galactic Cepheids , 2014, 1401.6547.

[30]  C. M. Bidin,et al.  Anchors for the cosmic distance scale: the Cepheids U Sagittarii, CF Cassiopeiae, and CEab Cassiopeiae , 2013, 1311.0865.

[31]  O. Chesneau,et al.  Extended envelopes around Galactic Cepheids IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI , 2013, 1309.0854.

[32]  L. Szabados,et al.  Discovery of the spectroscopic binary nature of three bright southern Cepheids , 2013, 1308.1855.

[33]  L. Berdnikov,et al.  Spectroscopic studies of southern-hemisphere Cepheids: Six objects in Centaurus (V Cen, V737 Cen) and Sagittarius (BB Sgr, W Sgr, X Sgr, Y Sgr) , 2013 .

[34]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 AND 4.5 μm IN THE MILKY WAY , 2012, 1209.4946.

[35]  John W. Fowler,et al.  Aperture Photometry Tool , 2012 .

[36]  Dominic J. Benford,et al.  Explanatory Supplement to the WISE All-Sky Data Release Products , 2012, WISE 2012.

[37]  N. Evans,et al.  NEW EVIDENCE FOR MASS LOSS FROM δ CEPHEI FROM H i 21 cm LINE OBSERVATIONS , 2011, 1112.0028.

[38]  O. Stahl,et al.  Spectroscopic studies of southern-hemisphere cepheids: WW Car, SX Car, UZ Car, UY Car, GX Car, HW Car, YZ Car , 2011 .

[39]  Potsdam,et al.  Calibrating The Cepheid Period-Luminosity Relation From The Infrared Surface Brightness Technique I. The P-Factor, The Milky Way Relations, And A Universal K-Band Relation , 2011, 1109.2017.

[40]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 μm AND 4.5 μm IN THE LARGE MAGELLANIC CLOUD , 2011, 1108.4672.

[41]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[42]  A. Monson,et al.  NEAR-INFRARED (JHK) PHOTOMETRY OF 131 NORTHERN GALACTIC CLASSICAL CEPHEIDS , 2011 .

[43]  Pierre Kervella,et al.  Spatially extended emission around the Cepheid RS Puppis in near-infrared hydrogen lines - Adaptive optics imaging with VLT/NACO , 2011 .

[44]  G. Fazio,et al.  GALACTIC CEPHEIDS WITH SPITZER. II. SEARCH FOR EXTENDED INFRARED EMISSION , 2010, 1011.3386.

[45]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[46]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[47]  Munetaka Ueno,et al.  The AKARI/IRC mid-infrared all-sky survey , 2010, 1003.0270.

[48]  S. Kanbur,et al.  TESTING MASS LOSS IN LARGE MAGELLANIC CLOUD CEPHEIDS USING INFRARED AND OPTICAL OBSERVATIONS. II. PREDICTIONS AND TESTS OF THE OGLE-III FUNDAMENTAL-MODE CEPHEIDS , 2010 .

[49]  L. Szabados,et al.  Binarity and Cluster Membership of Classical Cepheids , 2010 .

[50]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[51]  Pierre Kervella,et al.  The circumstellar envelopes of the Cepheids $\mathsf{\ell}$ Carinae and RS Puppis - Comparative study in the infrared with Spitzer, VLT/VISIR, and VLTI/MIDI , 2009, 0902.1588.

[52]  Denis Gillet,et al.  High-resolution spectroscopy for Cepheids distance determination IV. Time series of Hα line profiles , 2008 .

[53]  Michael W. Feast,et al.  The Luminosities and Distance Scales of Type II Cepheid and RR Lyrae variables , 2008, 0803.0466.

[54]  H. Neilson,et al.  On the Enhancement of Mass Loss in Cepheids Due to Radial Pulsation , 2008 .

[55]  D. Bersier,et al.  A New Calibration Of Galactic Cepheid Period-Luminosity Relations From B To K Bands, And A Comparison To LMC Relations , 2007, 0709.3255.

[56]  The Period Changes of the Cepheid RT Aurigae , 2007, 0709.3085.

[57]  E. al.,et al.  Extended Envelopes around Galactic Cepheids. III. Y Ophiuchi and α Persei from Near-Infrared Interferometry with CHARA/FLUOR , 2007, 0704.1825.

[58]  D. Bersier,et al.  High resolution spectroscopy for Cepheids distance determination. I. Line asymmetry , 2006, 0804.1321.

[59]  Pierre Kervella,et al.  Extended envelopes around Galactic Cepheids. II. Polaris and delta Cephei from near-infrared interfe , 2006 .

[60]  G. Perrin,et al.  Extended envelopes around Galactic Cepheids I. Carinae from near and mid-infrared interferometry with the VLTI , 2006 .

[61]  M. Albrow,et al.  A spectroscopic study of bright southern Cepheids - a high-resolution view of Cepheid atmospheres , 2005 .

[62]  S. Ridgway,et al.  The projection factor of δ Cephei A calibration of the Baade-Wesselink method using the CHARA Array , 2005, astro-ph/0506695.

[63]  M. Marconi,et al.  Pulsation and Evolutionary Masses of Classical Cepheids. I. Milky Way Variables , 2005, astro-ph/0505149.

[64]  Radial Velocities of Galactic Cepheids , 2005 .

[65]  Valery V. Kovtyukh,et al.  Phase-dependent Variation of the Fundamental Parameters of Cepheids. II. Periods Longer than 10 Days , 2005 .

[66]  The Stability of the Light Curve of DL Cassiopeiae Between 1959–1997 , 2004 .

[67]  D. Turner,et al.  On the crossing mode of the long-period Cepheid SV Vulpeculae , 2004 .

[68]  D. Turner,et al.  A search for evolutionary changes in the periods of Cepheids using archival data from the Harvard observatory plate collection I: VY, WZ and GH Carinae , 2004 .

[69]  O. Paris,et al.  The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud , 2004, astro-ph/0401211.

[70]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry - I. VINCI/VLTI observations of seven Galactic Cepheids , 2003, astro-ph/0311525.

[71]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .

[72]  B. Lane,et al.  Long-Baseline Interferometric Observations of Cepheids , 2002, astro-ph/0203060.

[73]  D. Bersier Fundamental Parameters of Cepheids. V. Additional Photometry and Radial Velocity Data for Southern Cepheids , 2002, astro-ph/0201259.

[74]  M. Marconi,et al.  Intermediate-Mass Star Models with Different Helium and Metal Contents , 2000, astro-ph/0006251.

[75]  Ž. Ivezić,et al.  DUSTY: Radiation transport in a dusty environment , 1999 .

[76]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[77]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[78]  L. Kiss A photometric and spectroscopic study of the brightest northern Cepheids — I. Observations , 1998 .

[79]  W. Gieren,et al.  Magellanic Cloud Cepheids: Abundances , 1998 .

[80]  Thomas G. Barnes,et al.  BVRIJHK PHOTOMETRY OF CEPHEID VARIABLES , 1997 .

[81]  S. Seager,et al.  Secular Changes in the Classical Cepheid Y Ophiuchi , 1995 .

[82]  R. Shobbrook UBV(RI)c observations for 13 bright Cepheids , 1992 .

[83]  P. Schechter,et al.  Gamma velocities of 58 faint Milky Way Cepheids , 1992 .

[84]  N. Evans,et al.  The orbit and companions of the classical Cepheid FF Aql , 1990 .

[85]  B. S. Carter Southern JHKL standards. , 1990 .

[86]  C. Beichman,et al.  Infrared Astronomical Satellite (IRAS) catalogs and atlases , 1988 .

[87]  W. Gieren A search for more Cepheid binaries , 1985 .

[88]  T. G. Barnes,et al.  Observational studies of Cepheids. II - BVRI photometry of 112 Cepheids , 1984 .

[89]  B. Madore,et al.  JHK observations of classical cepheids , 1984 .

[90]  W. Gieren A simultaneous photometric and radial velocity study of short-period southern Cepheids. II - The photometry , 1981 .

[91]  B. Madore Photoelectric UBV photometry of cepheids in the Magellanic Clouds and in the southern Milky Way. , 1975 .

[92]  R. H. Brown,et al.  The effects of limb darkening on measurements of angular size with an intensity interferometer , 1974 .

[93]  H. Abt THE LUMINOSITY OF THE CEPHEID Y OPHIUCHI , 1954 .