Complex-scaling method for the complex plasmonic resonances of planar subwavelength particles with corners

[1]  S. Shipman,et al.  Infinitely Many Embedded Eigenvalues for the Neumann-Poincaré Operator in 3D , 2020, SIAM J. Math. Anal..

[2]  Karl-Mikael Perfekt Plasmonic eigenvalue problem for corners: Limiting absorption principle and absolute continuity in the essential spectrum , 2019, Journal de Mathématiques Pures et Appliquées.

[3]  C. Hazard,et al.  Spectral analysis of polygonal cavities containing a negative-index material , 2020 .

[4]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[5]  Hyeonbae Kang,et al.  Recent Progress in the Inverse Conductivity Problem with Single Measurement* , 2019, Inverse problems and related topics.

[6]  S. Shipman,et al.  Embedded eigenvalues for the Neumann-Poincare operator , 2018, Journal of Integral Equations and Applications.

[7]  Hai Zhang,et al.  Characterization of the essential spectrum of the Neumann–Poincaré operator in 2D domains with corner via Weyl sequences , 2017, Revista Matemática Iberoamericana.

[8]  H. Ammari,et al.  Mathematical and Computational Methods in Photonics and Phononics , 2018, Mathematical Surveys and Monographs.

[9]  Patrick Ciarlet,et al.  Mesh requirements for the finite element approximation of problems with sign-changing coefficients , 2018, Numerische Mathematik.

[10]  Lothar Nannen,et al.  Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions , 2018, BIT Numerical Mathematics.

[11]  Anders Karlsson,et al.  On a Helmholtz transmission problem in planar domains with corners , 2017, J. Comput. Phys..

[12]  J. Helsing,et al.  The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points , 2017, Journal de Mathématiques Pures et Appliquées.

[13]  Daniel J. Arrigo,et al.  An Introduction to Partial Differential Equations , 2017, An Introduction to Partial Differential Equations.

[14]  Lucas Chesnel,et al.  Eigenvalue problems with sign-changing coefficients , 2017 .

[15]  M. Zworski Mathematical study of scattering resonances , 2016, 1609.03550.

[16]  M. Lim,et al.  Classification of spectra of the Neumann–Poincaré operator on planar domains with corners by resonance , 2016, 1603.03522.

[17]  Mihai Putinar,et al.  The Essential Spectrum of the Neumann–Poincaré Operator on a Domain with Corners , 2016 .

[18]  Lucas Chesnel,et al.  On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients , 2015, J. Comput. Phys..

[19]  KAZUNORI ANDO,et al.  Plasmon Resonance with Finite Frequencies: a Validation of the Quasi-static Approximation for Diametrically Small Inclusions , 2015, SIAM J. Appl. Math..

[20]  H. Ammari,et al.  Mathematical Analysis of Plasmonic Nanoparticles: The Scalar Case , 2015, Archive for Rational Mechanics and Analysis.

[21]  Hyeonbae Kang,et al.  Spectral Resolution of the Neumann–Poincaré Operator on Intersecting Disks and Analysis of Plasmon Resonance , 2015 .

[22]  Jun Zou,et al.  Optimal Shape Design by Partial Spectral Data , 2013, SIAM J. Sci. Comput..

[23]  Hyeonbae Kang,et al.  Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincaré operators , 2014, 1412.6250.

[24]  H. Ammari,et al.  Surface Plasmon Resonance of Nanoparticles and Applications in Imaging , 2014, 1412.3656.

[25]  Lucas Chesnel,et al.  RADIATION CONDITION FOR A NON-SMOOTH INTERFACE BETWEEN A DIELECTRIC AND A METAMATERIAL , 2013 .

[26]  Mihai Putinar,et al.  Spectral bounds for the Neumann-Poincaré operator on planar domains with corners , 2012, Journal d'Analyse Mathématique.

[27]  Daniel Grieser,et al.  The plasmonic eigenvalue problem , 2012, 1208.3120.

[28]  R. Cooke Real and Complex Analysis , 2011 .

[29]  Lucas Chesnel,et al.  T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .

[30]  Stefan Hein,et al.  Fano resonances in acoustics , 2010, Journal of Fluid Mechanics.

[31]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[32]  Dror Sarid,et al.  Modern Introduction to Surface Plasmons , 2010 .

[33]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[34]  Joseph E. Pasciak,et al.  The computation of resonances in open systems using a perfectly matched layer , 2009, Math. Comput..

[35]  Martin W. McCall,et al.  What is negative refraction? , 2009, NanoScience + Engineering.

[36]  Costas M. Soukoulis,et al.  Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials , 2008 .

[37]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[38]  C. Linton,et al.  Complex resonances and trapped modes in ducted domains , 2007, Journal of Fluid Mechanics.

[39]  Wolfgang Ebeling,et al.  Functions of Several Complex Variables and Their Singularities , 2007 .

[40]  Isaak D. Mayergoyz,et al.  Electrostatic (plasmon) resonances in nanoparticles , 2005 .

[41]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[42]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[43]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[44]  D. Bergman,et al.  Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? , 2001, Physical review letters.

[45]  L. Parnovski,et al.  Complex resonances in acoustic waveguides , 2000 .

[46]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[47]  M. Zworski RESONANCES IN PHYSICS AND GEOMETRY , 1999 .

[48]  Monique Dauge,et al.  Non-coercive transmission problems in polygonal domains. -- Problèmes de transmission non coercifs dans des polygones , 2011, 1102.1409.

[49]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[50]  Carey M. Rappaport,et al.  Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space , 1995 .

[51]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[52]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[53]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[54]  Christophe Hazard,et al.  Variational formulations for the determination of resonant states in scattering problems , 1992 .

[55]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[56]  Michael Isaacson,et al.  Surface plasmon excitation of objects with arbitrary shape and dielectric constant , 1989 .

[57]  SOME SPECTRAL PROPERTIES OF AN INTEGRAL OPERATOR IN POTENTIAL THEORY , 1986 .

[58]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[59]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[60]  S. Lang Complex Analysis , 1977 .

[61]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[62]  J. Combes,et al.  Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions , 1971 .

[63]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.