Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements

The reaction kinetics of four commercial ground granulated blast furnace slags with varying percentages of MgO (6 to 14 wt.%), activated with four different doses of sodium metasilicate, were evaluated using isothermal calorimetry. The reaction kinetics were strongly dependent on the dose of the alkaline activator used, and the chemical and physical properties of the slag. When using low concentrations of sodium metasilicate as an activator, the MgO content in the slag influences the kinetics of the reaction, while the CaO content plays a more significant role when the concentration of metasilicate is increased. This study elucidated a close relationship between the dose of the alkali-activator and the chemistry of the slag used, although it was not possible to identify a clear correlation between any of the published chemically-based “slag quality moduli” and the calorimetry results, highlighting the complexity of blast furnace slag glass chemistry, and the importance of the physical properties of the slag in defining its reactivity.

[1]  R. Thomas,et al.  Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders , 2016 .

[2]  G. Saoût,et al.  Incorporation of aluminium in calcium-silicate-hydrates , 2015 .

[3]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[4]  Francisca Puertas,et al.  Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements , 2003 .

[5]  X. Zhongzi,et al.  Kinetic study on hydration of alkali-activated slag , 1993 .

[6]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[7]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[8]  H. Jennings,et al.  Hydration of alkali-activated ground granulated blast furnace slag , 2000 .

[9]  J. Provis Geopolymers and other alkali activated materials: why, how, and what? , 2014 .

[10]  Caijun Shi,et al.  Some factors affecting early hydration of alkali-slag cements , 1996 .

[11]  B. Lothenbach,et al.  Thermodynamic modelling of alkali-activated slag cements , 2015 .

[12]  Caijun Shi,et al.  A calorimetric study of early hydration of alkali-slag cements , 1995 .

[13]  G. Saoût,et al.  Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO , 2011 .

[14]  J. Deventer,et al.  The Role of Al in Cross‐Linking of Alkali‐Activated Slag Cements , 2015 .

[15]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[16]  Rupert J. Myers,et al.  A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation , 2014 .

[17]  Francisca Puertas,et al.  Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate , 2004 .

[18]  Donald E. Macphee,et al.  Solubility and Aging of Calcium Silicate Hydrates in Alkaline Solutions at 25°C , 1989 .

[19]  Ruben Snellings,et al.  Assessing, Understanding and Unlocking Supplementary Cementitious Materials , 2016 .

[20]  A. Navrotsky,et al.  Systematics in the enthalpies of formation of anhydrous aluminosilicate zeolites, glasses, and dense phases. , 2001, Chemistry.

[21]  Frank Winnefeld,et al.  Influence of slag composition on the hydration of alkali-activated slags , 2015 .

[22]  S. Gin,et al.  A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals , 2018, npj Materials Degradation.

[23]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[24]  R. Snellings Surface Chemistry of Calcium Aluminosilicate Glasses , 2015 .

[25]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[26]  K. Scrivener,et al.  29Si and 27Al NMR study of alkali-activated slag , 2003 .