Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain

[1]  S. Srinivasula,et al.  Molecular Determinants of the Caspase-promoting Activity of Smac/DIABLO and Its Role in the Death Receptor Pathway* , 2000, The Journal of Biological Chemistry.

[2]  C. Allis,et al.  Signaling to Chromatin through Histone Modifications , 2000, Cell.

[3]  C. Allis,et al.  Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. , 2000, The Journal of biological chemistry.

[4]  B M Turner,et al.  Histone acetylation and an epigenetic code. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  C. Ponting,et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases , 2000, Nature.

[6]  T. Jenuwein,et al.  Structure-Function Analysis of SUV39H1 Reveals a Dominant Role in Heterochromatin Organization, Chromosome Segregation, and Mitotic Progression , 2000, Molecular and Cellular Biology.

[7]  T. Krude Initiation of Human DNA Replication in Vitro Using Nuclei from Cells Arrested at an Initiation-competent State* , 2000, The Journal of Biological Chemistry.

[8]  Robin C. Allshire,et al.  Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis , 2000, Current Biology.

[9]  R. Tjian,et al.  Structure and function of a human TAFII250 double bromodomain module. , 2000, Science.

[10]  Brian O. Smith,et al.  The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer , 2000, The EMBO journal.

[11]  S. Elgin,et al.  The HP1 protein family: getting a grip on chromatin. , 2000, Current opinion in genetics & development.

[12]  R. Allshire,et al.  Distinct protein interaction domains and protein spreading in a complex centromere. , 2000, Genes & development.

[13]  Prim B. Singh,et al.  Mammalian chromodomain proteins: their role in genome organisation and expression. , 2000, Bioessays.

[14]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[15]  Y. Lazebnik,et al.  Caspase-9 and APAF-1 form an active holoenzyme. , 1999, Genes & development.

[16]  B. Turner,et al.  Duplication and Maintenance of Heterochromatin Domains , 1999, The Journal of cell biology.

[17]  R. Paro,et al.  The Drosophila Polycomb Protein Interacts with Nucleosomal Core Particles In Vitro via Its Repression Domain , 1999, Molecular and Cellular Biology.

[18]  D. Kioussis,et al.  Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal-context-dependent manner , 1999, Nature Genetics.

[19]  R. Losson,et al.  Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family , 1999, The EMBO journal.

[20]  J. Abrams An emerging blueprint for apoptosis in Drosophila. , 1999, Trends in cell biology.

[21]  B. Stillman,et al.  Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. , 1999, Molecular cell.

[22]  Y. Allory,et al.  Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells , 1999, Chromosoma.

[23]  S. Srinivasula,et al.  Cytochrome c and dATP-mediated Oligomerization of Apaf-1 Is a Prerequisite for Procaspase-9 Activation* , 1999, The Journal of Biological Chemistry.

[24]  Lei Zeng,et al.  Structure and ligand of a histone acetyltransferase bromodomain , 1999, Nature.

[25]  Prim B. Singh,et al.  KAP-1 Corepressor Protein Interacts and Colocalizes with Heterochromatic and Euchromatic HP1 Proteins: a Potential Role for Krüppel-Associated Box–Zinc Finger Proteins in Heterochromatin-Mediated Gene Silencing , 1999, Molecular and Cellular Biology.

[26]  F. Grosveld Activation by locus control regions? , 1999, Current opinion in genetics & development.

[27]  G. Schotta,et al.  Functional mammalian homologues of the Drosophila PEV‐modifier Su(var)3‐9 encode centromere‐associated proteins which complex with the heterochromatin component M31 , 1999, The EMBO journal.

[28]  T. Krude Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. , 1999, Experimental cell research.

[29]  R. Paro,et al.  Chromo-domain proteins: linking chromatin structure to epigenetic regulation. , 1998, Current opinion in cell biology.

[30]  V. Pirrotta,et al.  Polycombing the Genome: PcG, trxG, and Chromatin Silencing , 1998, Cell.

[31]  L. Wallrath,et al.  Unfolding the mysteries of heterochromatin. , 1998, Current opinion in genetics & development.

[32]  Robin C. Allshire,et al.  Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe , 1998, Nature.

[33]  H. Gould Chromatin : a practical approach , 1998 .

[34]  B. Turner,et al.  Transient Inhibition of Histone Deacetylation Alters the Structural and Functional Imprint at Fission Yeast Centromeres , 1997, Cell.

[35]  Matthias Merkenschlager,et al.  Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin , 1997, Cell.

[36]  M. Botchan,et al.  Association of the Origin Recognition Complex with Heterochromatin and HP1 in Higher Eukaryotes , 1997, Cell.

[37]  A. Murzin,et al.  Structure of the chromatin binding (chromo) domain from mouse modifier protein 1 , 1997, The EMBO journal.

[38]  Andrew J. Bannister,et al.  The CBP co-activator is a histone acetyltransferase , 1996, Nature.

[39]  E. Nimmo,et al.  Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. , 1996, Journal of cell science.

[40]  J. Abrams,et al.  grim, a novel cell death gene in Drosophila. , 1996, Genes & development.

[41]  A. Riggs,et al.  Epigenetic mechanisms of gene regulation , 1996 .

[42]  R. Allshire,et al.  The chromodomain protein Swi6: a key component at fission yeast centromeres , 1995, Science.

[43]  J. C. Eissenberg,et al.  Functional analysis of the chromo domain of HP1. , 1995, The EMBO journal.

[44]  Andreas Hecht,et al.  Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast , 1995, Cell.

[45]  E. Nimmo,et al.  Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. , 1995, Genes & development.

[46]  R. Allshire,et al.  Position effect variegation at fission yeast centromeres , 1994, Cell.

[47]  G. Butcher,et al.  A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. , 1994, Cytogenetics and cell genetics.

[48]  A. Aguzzi,et al.  Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. , 1992, Genes & development.

[49]  Prim B. Singh,et al.  The mouse has a Polycomb-like chromobox gene. , 1992, Development.

[50]  R. Paro,et al.  The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Elgin,et al.  Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. , 1990, Proceedings of the National Academy of Sciences of the United States of America.