Strong q-log-convexity of the Eulerian polynomials of Coxeter groups
暂无分享,去创建一个
[1] Leonard Carlitz,et al. Eulerian Numbers and Polynomials , 1959 .
[2] Francesco Brenti,et al. q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..
[3] Carla D. Savage,et al. The s-eulerian polynomials have only real roots , 2012, 1208.3831.
[4] P. Barry. Riordan arrays, orthogonal polynomials as moments, and Hankel transforms , 2011, 1102.0921.
[5] Bruce E. Sagan. LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .
[6] Paul Barry. Exponential Riordan Arrays and Permutation Enumeration , 2010 .
[7] Yeong-Nan Yeh,et al. Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.
[8] Ira M. Gessel,et al. On the descent numbers and major indices for the hyperoctahedral group , 2007, Adv. Appl. Math..
[9] Chak-On Chow. On the Eulerian polynomials of type D , 2003, Eur. J. Comb..
[10] William Y. C. Chen,et al. The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..
[11] Arthur L. B. Yang,et al. Schur positivity and the q-log-convexity of the Narayana polynomials , 2008, 0806.1561.
[12] H. Wall,et al. Analytic Theory of Continued Fractions , 2000 .
[13] P. Barry. Eulerian polynomials as moments, via exponential Riordan arrays , 2011, 1803.10308.
[14] Francesco Brenti,et al. A Class of q-Symmetric Functions Arising from Plethysm , 2000, J. Comb. Theory, Ser. A.
[15] A. Björner,et al. Combinatorics of Coxeter Groups , 2005 .
[16] Jiang Zeng,et al. Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials , 2013, Adv. Appl. Math..
[17] Jonathan I. Hall,et al. General Eulerian Numbers and Eulerian Polynomials , 2012, 1207.0430.
[18] General Eulerian Polynomials as Moments Using Exponential Riordan Arrays , 2013 .
[19] Li Liu,et al. On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..
[20] Emeric Deutsch,et al. Production Matrices and Riordan Arrays , 2007, math/0702638.
[21] Arthur L. B. Yang,et al. Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.
[22] D. Foata,et al. Theorie Geometrique des Polynomes Euleriens , 1970 .
[23] Bao-Xuan Zhu,et al. Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..
[24] L. M. Butler,et al. A Note on Log-Convexity of q-Catalan Numbers , 2007 .
[25] Yi Wang,et al. A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..
[26] Bao-Xuan Zhu,et al. Some positivities in certain triangular arrays , 2014 .