Strong q-log-convexity of the Eulerian polynomials of Coxeter groups

In this paper we prove the strong q -log-convexity of the Eulerian polynomials of Coxeter groups using their exponential generating functions. Our proof is based on the theory of exponential Riordan arrays and a criterion for determining the strong q -log-convexity of polynomial sequences, whose generating functions can be given by a continued fraction. As applications, we get the strong q -log-convexity of the Eulerian polynomials of types A n , B n , their q -analogue and the generalized Eulerian polynomials associated to the arithmetic progression { a , a + d , a + 2 d , a + 3 d , ? } in a unified manner.

[1]  Leonard Carlitz,et al.  Eulerian Numbers and Polynomials , 1959 .

[2]  Francesco Brenti,et al.  q-Eulerian Polynomials Arising from Coxeter Groups , 1994, Eur. J. Comb..

[3]  Carla D. Savage,et al.  The s-eulerian polynomials have only real roots , 2012, 1208.3831.

[4]  P. Barry Riordan arrays, orthogonal polynomials as moments, and Hankel transforms , 2011, 1102.0921.

[5]  Bruce E. Sagan LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .

[6]  Paul Barry Exponential Riordan Arrays and Permutation Enumeration , 2010 .

[7]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[8]  Ira M. Gessel,et al.  On the descent numbers and major indices for the hyperoctahedral group , 2007, Adv. Appl. Math..

[9]  Chak-On Chow On the Eulerian polynomials of type D , 2003, Eur. J. Comb..

[10]  William Y. C. Chen,et al.  The q-log-convexity of the Narayana polynomials of type B , 2010, Adv. Appl. Math..

[11]  Arthur L. B. Yang,et al.  Schur positivity and the q-log-convexity of the Narayana polynomials , 2008, 0806.1561.

[12]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[13]  P. Barry Eulerian polynomials as moments, via exponential Riordan arrays , 2011, 1803.10308.

[14]  Francesco Brenti,et al.  A Class of q-Symmetric Functions Arising from Plethysm , 2000, J. Comb. Theory, Ser. A.

[15]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[16]  Jiang Zeng,et al.  Positivity properties of Jacobi-Stirling numbers and generalized Ramanujan polynomials , 2013, Adv. Appl. Math..

[17]  Jonathan I. Hall,et al.  General Eulerian Numbers and Eulerian Polynomials , 2012, 1207.0430.

[18]  General Eulerian Polynomials as Moments Using Exponential Riordan Arrays , 2013 .

[19]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[20]  Emeric Deutsch,et al.  Production Matrices and Riordan Arrays , 2007, math/0702638.

[21]  Arthur L. B. Yang,et al.  Recurrence Relations for Strongly q-Log-Convex Polynomials , 2008, Canadian Mathematical Bulletin.

[22]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[23]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[24]  L. M. Butler,et al.  A Note on Log-Convexity of q-Catalan Numbers , 2007 .

[25]  Yi Wang,et al.  A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..

[26]  Bao-Xuan Zhu,et al.  Some positivities in certain triangular arrays , 2014 .