Modelling and Parameter Observation for Proton Exchange Membrane Fuel Cell

Proton-Exchange Membrane (PEM) plays a potential role in offering effective and sophisticated solutions to a wide range of real-world applications. It is seen as a suitable choice to fit the emission reduction schedules and to challenge other technologies in terms of efficiency and greenhouse gases production. In automotive systems, this technology offers the advantage of being able to operate at low temperature, consuming the oxygen from the air and having short automotive startup time. This makes it a challenging alternative to the traditional technologies used in automotive systems. The fuel cell consists of a membrane that separates two electrodes (cathode and anode). This work considers only the cathode which is divided into two chambers: the channel and the Gas Diffusion Layer (GDL). The hydrogen generated from the fuel processing system, is fed into the anode of the cell stack, while air is pumped into the cathode through an air compressor. Fuel cells produce water and heat by converting the chemical energy to electrical energy. As all chemical reactions, the fuel cell's optimal efficiency depends on the operating conditions: air flow, humidity, pressure, and temperature. For a good transportation of the reactant gases (hydrogen and air), the hydration of the membrane needs to be regulated. For this reason, this paper deals with the internal parameter identification of a PEM fuel cell system, especially the flooding phenomenon. This is performed by proposing a model-based observer, which is the core of an on-line monitoring method. The proposed procedure is simple: it consists of rebuilding the chosen internal parameters, which are the vapor and the oxygen partial pressures at the GDL, aiming to monitor the hydration parameter. This strategy is cost-effective and its approach can be extended to cover the whole stack.

[1]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems , 2004 .

[2]  Yann Bultel,et al.  Electrochemical Impedance and Acoustic Emission Survey of Water Desorption in Nafion Membranes , 2009 .

[3]  I. Sadli Modélisation par impédance d'une pile à combustible PEM pour utilisation en électronique de puissance , 2006 .

[4]  E. Godoy,et al.  Dynamic Model and Experimental Validation of a PEM Fuel Cell System , 2014 .

[5]  Sebastián Dormido,et al.  Diagnosis of PEM Fuel Cells through Current Interruption , 2007 .

[6]  Baki M. Cetegen,et al.  In Situ Optical Diagnostics for Measurements of Water Vapor Partial Pressure in a PEM Fuel Cell , 2006 .

[7]  Vilayanur V. Viswanathan,et al.  Magnetic resonance imaging (MRI) of PEM dehydration and gas manifold flooding during continuous fuel cell operation , 2006 .

[8]  M. Kim,et al.  Experimental approaches for distribution and behavior of water in PEMFC under flow direction and differential pressure using neutron imaging technique , 2009 .

[9]  Chao-Yang Wang,et al.  In situ water distribution measurements in a polymer electrolyte fuel cell , 2003 .

[10]  M. Gérard Étude des interactions pile/système en vue de l'optimisation d'un générateur pile à combustible : -interactions cœur de pile/compresseur- -interactions cœur de pile/convertisseur- , 2010 .

[11]  Y. Bultel,et al.  Electrical and thermal investigation of a self-breathing fuel cell , 2006 .

[12]  J. Ramousse Transferts couplés masse-charge-chaleur dans une cellule de pile à combustible à membrane polymère , 2005 .

[13]  B. Davat,et al.  2D modeling of a defective PEMFC , 2011 .

[14]  Ay Su,et al.  Studies on flooding in PEM fuel cell cathode channels , 2006 .

[15]  Belkacem Ould-Bouamama,et al.  Model based PEM fuel cell state-of-health monitoring via ac impedance measurements , 2006 .

[16]  Philipp Nadel,et al.  Control Of Fuel Cell Power Systems Principles Modeling Analysis And Feedback Design , 2016 .

[17]  David L. Jacobson,et al.  In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells , 2004 .

[18]  Nicolas Fouquet Caractérisation de l’état de fonctionnement d’une pile à combustible PEM par spectroscopie d’impédance électrochimique : application a la surveillance en temps réel du contenu en eau de l’assemblage membrane électrode , 2006 .

[19]  Ay Su,et al.  Study of water-flooding behaviour in cathode channel of a transparent proton-exchange membrane fuel cell , 2006 .

[20]  Daniel Hissel,et al.  Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling , 2011 .

[21]  Vincent Phlippoteau Outils et Méthodes pour le diagnostic d’un état de santé d’une pile à combustible , 2009 .

[22]  Trung Van Nguyen,et al.  Mathematical Modeling of Cathodic Protection Using the Boundary Element Method with a Nonlinear Polarization Curve , 1992 .

[23]  C. Hebling,et al.  Visualization of water buildup in the cathode of a transparent PEM fuel cell , 2003 .