On time and space decomposition of complex structures

Models of large and complex systems can often be reduced to smaller sub-models, for easier analysis, by a process known as decomposition. Certain criteria for successful decompositions can be established.

[1]  H. Brøndsted Rate of Regeneration in Planarians after Starvation , 1953 .

[2]  H. Theil Linear Aggregation in Input-Output Analysis , 1957 .

[3]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[4]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[5]  Christopher Alexander Notes on the Synthesis of Form , 1964 .

[6]  Peter J. Denning,et al.  Thrashing: its causes and prevention , 1968, AFIPS Fall Joint Computing Conference.

[7]  Edsger W. Dijkstra,et al.  The structure of the “THE”-multiprogramming system , 1968, CACM.

[8]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[9]  D. L. Parnas,et al.  On the criteria to be used in decomposing systems into modules , 1972, Software Pioneers.

[10]  Leonard Kleinrock,et al.  Packet Switching in a Multiaccess Broadcast Channel: Performance Evaluation , 1975, IEEE Trans. Commun..

[11]  Pierre-Jacques Courtois,et al.  Decomposability, instabilities, and saturation in multiprogramming systems , 1975, CACM.

[12]  K. Wilson Renormalization Group Methods , 1975 .

[13]  K. Mani Chandy,et al.  Approximate Analysis of General Queuing Networks , 1975, IBM J. Res. Dev..

[14]  K. Mani Chandy,et al.  Open, Closed, and Mixed Networks of Queues with Different Classes of Customers , 1975, JACM.

[15]  Isabelle Stengers,et al.  La nouvelle alliance , 1979 .

[16]  K. Wilson Problems in Physics with many Scales of Length , 1979 .

[17]  P. Kuehn,et al.  Approximate Analysis of General Queuing Networks by Decomposition , 1979, IEEE Trans. Commun..

[18]  P. Kokotovic,et al.  A singular perturbation approach to modeling and control of Markov chains , 1981 .

[19]  Ghislain Vansteenkiste,et al.  Computer-aided modelling and simulation , 1982 .

[20]  Kishor S. Trivedi Reliability Evaluation for Fault-Tolerant Systems , 1983, Computer Performance and Reliability.

[21]  Rolf Schassberger An Aggregation Principle for Computing Invariant Probability Vectors for Semi-Markovian Models , 1983, Computer Performance and Reliability.

[22]  G. W. Stewart,et al.  Computable Error Bounds for Aggregated Markov Chains , 1983, JACM.

[23]  P. Albin,et al.  Structure and complexity in economic and social systems , 1983 .

[24]  Pierre Semal,et al.  Bounds for the Positive Eigenvectors of Nonnegative Matrices and for their Approximations by Decomposition , 1984, JACM.

[25]  P. Courtois,et al.  On polyhedra of Perron-Frobenius eigenvectors , 1985 .

[26]  Hendrik Vantilborgh,et al.  Aggregation with an error of O(ε2) , 1985, JACM.