From evidence to inference: Probing the evolution of protein interaction networks

The evolutionary mechanisms by which protein interaction networks grow and change are beginning to be appreciated as a major factor shaping their present‐day structures and properties. Starting with a consideration of the biases and errors inherent in our current views of these networks, we discuss the dangers of constructing evolutionary arguments from naïve analyses of network topology. We argue that progress in understanding the processes of network evolution is only possible when hypotheses are formulated as plausible evolutionary models and compared against the observed data within the framework of probabilistic modeling. The value of such models is expected to be greatly enhanced as they incorporate more of the details of the biophysical properties of interacting proteins, gene phylogeny, and measurement error and as more advanced methodologies emerge for model comparison and the inference of ancestral network states.

[1]  Julie M. Sahalie,et al.  An experimentally derived confidence score for binary protein-protein interactions , 2008, Nature Methods.

[2]  David L. Robertson,et al.  Specificity in protein interactions and its relationship with sequence diversity and coevolution , 2007, Proceedings of the National Academy of Sciences.

[3]  Robert D. Finn,et al.  iPfam: visualization of protein?Cprotein interactions in PDB at domain and amino acid resolutions , 2005, Bioinform..

[4]  Kirill Evlampiev,et al.  Conservation and topology of protein interaction networks under duplication-divergence evolution , 2008, Proceedings of the National Academy of Sciences.

[5]  Roded Sharan,et al.  Genetic interactions in yeast: is robustness going bust? , 2007, Molecular systems biology.

[6]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[7]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[8]  S. Low,et al.  The "robust yet fragile" nature of the Internet. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Andreas Wagner,et al.  A statistical framework for combining and interpreting proteomic datasets , 2004, Bioinform..

[10]  C. Pál,et al.  An integrated view of protein evolution , 2006, Nature Reviews Genetics.

[11]  M. Gerstein,et al.  Design principles of molecular networks revealed by global comparisons and composite motifs , 2006, Genome Biology.

[12]  Claudia Gómez Santillán,et al.  Statistical Selection of Relevant Features to Classify Random, Scale Free and Exponential Networks , 2007, Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007).

[13]  Yasukazu Nakamura,et al.  A Large-scale Protein–protein Interaction Analysis in Synechocystis sp. PCC6803 , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[14]  A Vázquez,et al.  The topological relationship between the large-scale attributes and local interaction patterns of complex networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Carsten Wiuf,et al.  Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum , 2007, PLoS Comput. Biol..

[16]  M. Nei,et al.  Concerted and birth-and-death evolution of multigene families. , 2005, Annual review of genetics.

[17]  Chris Wiggins,et al.  Discriminative topological features reveal biological network mechanisms , 2004, BMC Bioinformatics.

[18]  A. Wagner,et al.  Innovation and robustness in complex regulatory gene networks , 2007, Proceedings of the National Academy of Sciences.

[19]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[20]  M. Medina Genomes, phylogeny, and evolutionary systems biology , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Noah A. Rosenberg,et al.  Genealogical trees, coalescent theory and the analysis of genetic polymorphisms , 2002, Nature Reviews Genetics.

[22]  A. van Hoof,et al.  Conserved Functions of Yeast Genes Support the Duplication, Degeneration and Complementation Model for Gene Duplication , 2005, Genetics.

[23]  M. Stumpf,et al.  A likelihood approach to analysis of network data , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[25]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[27]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[28]  R. Russell,et al.  Targeting and tinkering with interaction networks. , 2008, Nature chemical biology.

[29]  Hunter B. Fraser,et al.  Modularity and evolutionary constraint on proteins , 2005, Nature Genetics.

[30]  P. Uetz,et al.  The Binary Protein Interactome of Treponema pallidum – The Syphilis Spirochete , 2008, PloS one.

[31]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[32]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[33]  T. Ideker,et al.  Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae , 2006, Journal of biology.

[34]  Pinak Chakrabarti,et al.  Macromolecular recognition in the Protein Data Bank , 2006, Acta crystallographica. Section D, Biological crystallography.

[35]  C. Adami,et al.  Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets , 2003, BMC Evolutionary Biology.

[36]  Debra Goldberg,et al.  Reverse Engineering the Evolution of Protein Interaction Networks , 2008, Pacific Symposium on Biocomputing.

[37]  S. Tavaré,et al.  Modern computational approaches for analysing molecular genetic variation data , 2006, Nature Reviews Genetics.

[38]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[39]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Robert Gentleman,et al.  Estimating node degree in bait-prey graphs , 2008, Bioinform..

[41]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[42]  A. Hughes,et al.  Gene duplication and the origin of novel proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Carsten Wiuf,et al.  The effects of incomplete protein interaction data on structural and evolutionary inferences , 2006, BMC Biology.

[44]  E. Ziv,et al.  Inferring network mechanisms: the Drosophila melanogaster protein interaction network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[46]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[47]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[48]  Jianzhi Zhang,et al.  In Search of the Biological Significance of Modular Structures in Protein Networks , 2007, PLoS Comput. Biol..

[49]  S. Teichmann,et al.  Assembly reflects evolution of protein complexes , 2008, Nature.

[50]  Sebastian Bonhoeffer,et al.  Evolution of complexity in signaling pathways , 2006, Proceedings of the National Academy of Sciences.

[51]  S. Fields High‐throughput two‐hybrid analysis , 2005, The FEBS journal.

[52]  Jan O. Korbel,et al.  Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context , 2007, Proceedings of the National Academy of Sciences.

[53]  P. Benfey,et al.  From Genotype to Phenotype: Systems Biology Meets Natural Variation , 2008, Science.

[54]  Jerzy Tiuryn,et al.  Identification of functional modules from conserved ancestral protein-protein interactions , 2007, ISMB/ECCB.

[55]  M. Nei The new mutation theory of phenotypic evolution , 2007, Proceedings of the National Academy of Sciences.

[56]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[57]  Sergei Maslov,et al.  Upstream plasticity and downstream robustness in evolution of molecular networks , 2003, BMC Evolutionary Biology.

[58]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[59]  Nevan J Krogan,et al.  Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss , 2007, Molecular systems biology.

[60]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[61]  Kirill Evlampiev,et al.  Modeling protein network evolution under genome duplication and domain shuffling , 2007, BMC Systems Biology.

[62]  X. Gu,et al.  Expression divergence between duplicate genes. , 2005, Trends in genetics : TIG.

[63]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  Cyrus Chothia,et al.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny , 2008, Nucleic Acids Res..

[65]  Matthew W. Hahn,et al.  Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? , 2004, Journal of Molecular Evolution.

[66]  Yasukazu Nakamura,et al.  A Large Scale Analysis of Protein–Protein Interactions in the Nitrogen-fixing Bacterium Mesorhizobium loti , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[67]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[68]  Andreas Wagner,et al.  Neutralism and selectionism: a network-based reconciliation , 2008, Nature Reviews Genetics.

[69]  David L Robertson,et al.  All duplicates are not equal: the difference between small-scale and genome duplication , 2007, Genome Biology.

[70]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[71]  Sarel J Fleishman,et al.  Comment on "Network Motifs: Simple Building Blocks of Complex Networks" and "Superfamilies of Evolved and Designed Networks" , 2004, Science.

[72]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[73]  Carsten Wiuf,et al.  Evolutionary Analysis of Protein Interaction Networks , 2009 .

[74]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[75]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[76]  Philippe Sanseau,et al.  Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs , 2004, BMC Evolutionary Biology.

[77]  C. Pál,et al.  Highly expressed genes in yeast evolve slowly. , 2001, Genetics.

[78]  R. Gentleman,et al.  Coverage and error models of protein-protein interaction data by directed graph analysis , 2007, Genome Biology.

[79]  Robert Gentleman,et al.  Making the most of high-throughput protein-interaction data , 2007, Genome Biology.

[80]  Dannie Durand,et al.  A hybrid micro-macroevolutionary approach to gene tree reconstruction. , 2006 .

[81]  Eric J. Deeds,et al.  A simple physical model for scaling in protein-protein interaction networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Philip M. Kim,et al.  Relating Three-Dimensional Structures to Protein Networks Provides Evolutionary Insights , 2006, Science.

[83]  Dannie Durand,et al.  A Hybrid Micro-Macroevolutionary Approach to Gene Tree Reconstruction , 2005, RECOMB.

[84]  M. Vidal,et al.  Effect of sampling on topology predictions of protein-protein interaction networks , 2005, Nature Biotechnology.

[85]  R. Nussinov,et al.  Principles of protein-protein interactions: what are the preferred ways for proteins to interact? , 2008, Chemical reviews.

[86]  Z. Weng,et al.  Structure, function, and evolution of transient and obligate protein-protein interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  C. Wilke,et al.  Why highly expressed proteins evolve slowly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Evelyn Fox Keller,et al.  Revisiting "scale-free" networks. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[89]  M. Vergassola,et al.  An evolutionary and functional assessment of regulatory network motifs , 2005, Genome Biology.

[90]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[91]  Jianzhi Zhang,et al.  Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution , 2005, Genetics.

[92]  M. Lynch The evolution of genetic networks by non-adaptive processes , 2007, Nature Reviews Genetics.

[93]  S. Levin,et al.  Mathematical and Computational Challenges in Population Biology and Ecosystems Science , 1997, Science.

[94]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[95]  Peter Woollard,et al.  The minimum information required for reporting a molecular interaction experiment (MIMIx) , 2007, Nature Biotechnology.

[96]  A. Wagner,et al.  Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications , 2002, BMC Evolutionary Biology.

[97]  Jessica H. Fong,et al.  Predicting specificity in bZIP coiled-coil protein interactions , 2004, Genome Biology.

[98]  A. Wagner,et al.  Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Vespignani,et al.  Modeling of Protein Interaction Networks , 2001, Complexus.

[100]  Andreas Wagner,et al.  Does Selection Mold Molecular Networks? , 2003, Science's STKE.

[101]  S. Lovell,et al.  Protein-protein interaction networks and biology—what's the connection? , 2008, Nature Biotechnology.

[102]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[103]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[104]  Mark D. Rausher,et al.  Escape from adaptive conflict after duplication in an anthocyanin pathway gene , 2008, Nature.

[105]  R. Russell,et al.  Taking the mystery out of biological networks , 2004, EMBO reports.

[106]  Debra Goldberg,et al.  Questioning the Ubiquity of Neofunctionalization , 2009, PLoS Comput. Biol..

[107]  Sarah A Teichmann,et al.  Evolution of protein complexes by duplication of homomeric interactions , 2007, Genome Biology.

[108]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[109]  Michael P. H. Stumpf,et al.  Multi-model inference of network properties from incomplete data , 2006, J. Integr. Bioinform..

[110]  Otto X. Cordero,et al.  Feed-forward loop circuits as a side effect of genome evolution. , 2006, Molecular biology and evolution.

[111]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[112]  W. Banzhaf,et al.  Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence. , 2006, Bio Systems.

[113]  Aaron Kershenbaum,et al.  Lasting impressions: motifs in protein-protein maps may provide footprints of evolutionary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[115]  M. Tyers,et al.  Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network , 2006, PLoS biology.

[116]  James Vlasblom,et al.  Challenges and Rewards of Interaction Proteomics * , 2009, Molecular & Cellular Proteomics.

[117]  S. Teichmann,et al.  Gene regulatory network growth by duplication , 2004, Nature Genetics.

[118]  E. Davidson,et al.  Response to Comment on "Gene Regulatory Networks and the Evolution of Animal Body Plans" , 2006, Science.

[119]  R. May Uses and Abuses of Mathematics in Biology , 2004, Science.

[120]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[121]  Magnus Rattray,et al.  Reconstruction of ancestral protein interaction networks for the bZIP transcription factors , 2007, Proceedings of the National Academy of Sciences.

[122]  R. Gentleman,et al.  Making Sense of High-Throughput Protein-Protein Interaction Data , 2005, Statistical applications in genetics and molecular biology.

[123]  M. Stumpf,et al.  Evolution at the system level: the natural history of protein interaction networks. , 2007, Trends in ecology & evolution.

[124]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[125]  Julie A. Hines,et al.  A proteome-wide protein interaction map for Campylobacter jejuni , 2007, Genome Biology.

[126]  R. Russell,et al.  Structural systems biology: modelling protein interactions , 2006, Nature Reviews Molecular Cell Biology.

[127]  Marc Vidal,et al.  Confirmation of Organized Modularity in the Yeast Interactome , 2007, PLoS biology.

[128]  Carsten Wiuf,et al.  Statistical Model Selection Methods Applied to Biological Networks , 2005, Trans. Comp. Sys. Biology.

[129]  Carsten Wiuf,et al.  Statistical and evolutionary analysis of biological networks , 2009 .

[130]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[131]  G. Box Science and Statistics , 1976 .

[132]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[133]  Manolis Kellis,et al.  The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication , 2008, Proceedings of the National Academy of Sciences.

[134]  K. Kaski,et al.  Intensity and coherence of motifs in weighted complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[135]  Kenneth H. Wolfe,et al.  Turning a hobby into a job: How duplicated genes find new functions , 2008, Nature Reviews Genetics.

[136]  Roded Sharan,et al.  PathBLAST: a tool for alignment of protein interaction networks , 2004, Nucleic Acids Res..

[137]  Sebastian Bonhoeffer,et al.  The Evolution of Connectivity in Metabolic Networks , 2005, PLoS biology.

[138]  Michael Schroeder,et al.  SCOPPI: a structural classification of protein–protein interfaces , 2005, Nucleic Acids Res..

[139]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.

[140]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[141]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[142]  S. Teichmann The constraints protein-protein interactions place on sequence divergence. , 2002, Journal of molecular biology.

[143]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.